{"title":"基于Ember数据集的异常检测和响应","authors":"Viraj Rathod, C. Parekh, Dharati Dholariya","doi":"10.1109/icrito51393.2021.9596451","DOIUrl":null,"url":null,"abstract":"In the era of rapid technological growth, malicious traffic has drawn increased attention. Most well-known offensive security assessment todays are heavily focused on pre-compromise. The amount of anomalous data in today's context is massive. Analyzing the data using primitive methods would be highly challenging. Solution to it is: If we can detect adversary behaviors in the early stage of compromise, one can prevent and safeguard themselves from various attacks including ransomwares and Zero-day attacks. Integration of new technologies Artificial Intelligence & Machine Learning with manual Anomaly Detection can provide automated machine-based detection which in return can provide the fast, error free, simplify & scalable Threat Detection & Response System. Endpoint Detection & Response (EDR) tools provide a unified view of complex intrusions using known adversarial behaviors to identify intrusion events. We have used the EMBER dataset, which is a labelled benchmark dataset. It is used to train machine learning models to detect malicious portable executable files. This dataset consists of features derived from 1.1 million binary files: 900,000 training samples among which 300,000 were malicious, 300,000 were benevolent, 300,000 un-labelled, and 200,000 evaluation samples among which 100K were malicious, 100K were benign. We have also included open-source code for extracting features from additional binaries, enabling the addition of additional sample features to the dataset.","PeriodicalId":259978,"journal":{"name":"2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI & ML Based Anamoly Detection and Response Using Ember Dataset\",\"authors\":\"Viraj Rathod, C. Parekh, Dharati Dholariya\",\"doi\":\"10.1109/icrito51393.2021.9596451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the era of rapid technological growth, malicious traffic has drawn increased attention. Most well-known offensive security assessment todays are heavily focused on pre-compromise. The amount of anomalous data in today's context is massive. Analyzing the data using primitive methods would be highly challenging. Solution to it is: If we can detect adversary behaviors in the early stage of compromise, one can prevent and safeguard themselves from various attacks including ransomwares and Zero-day attacks. Integration of new technologies Artificial Intelligence & Machine Learning with manual Anomaly Detection can provide automated machine-based detection which in return can provide the fast, error free, simplify & scalable Threat Detection & Response System. Endpoint Detection & Response (EDR) tools provide a unified view of complex intrusions using known adversarial behaviors to identify intrusion events. We have used the EMBER dataset, which is a labelled benchmark dataset. It is used to train machine learning models to detect malicious portable executable files. This dataset consists of features derived from 1.1 million binary files: 900,000 training samples among which 300,000 were malicious, 300,000 were benevolent, 300,000 un-labelled, and 200,000 evaluation samples among which 100K were malicious, 100K were benign. We have also included open-source code for extracting features from additional binaries, enabling the addition of additional sample features to the dataset.\",\"PeriodicalId\":259978,\"journal\":{\"name\":\"2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icrito51393.2021.9596451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icrito51393.2021.9596451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AI & ML Based Anamoly Detection and Response Using Ember Dataset
In the era of rapid technological growth, malicious traffic has drawn increased attention. Most well-known offensive security assessment todays are heavily focused on pre-compromise. The amount of anomalous data in today's context is massive. Analyzing the data using primitive methods would be highly challenging. Solution to it is: If we can detect adversary behaviors in the early stage of compromise, one can prevent and safeguard themselves from various attacks including ransomwares and Zero-day attacks. Integration of new technologies Artificial Intelligence & Machine Learning with manual Anomaly Detection can provide automated machine-based detection which in return can provide the fast, error free, simplify & scalable Threat Detection & Response System. Endpoint Detection & Response (EDR) tools provide a unified view of complex intrusions using known adversarial behaviors to identify intrusion events. We have used the EMBER dataset, which is a labelled benchmark dataset. It is used to train machine learning models to detect malicious portable executable files. This dataset consists of features derived from 1.1 million binary files: 900,000 training samples among which 300,000 were malicious, 300,000 were benevolent, 300,000 un-labelled, and 200,000 evaluation samples among which 100K were malicious, 100K were benign. We have also included open-source code for extracting features from additional binaries, enabling the addition of additional sample features to the dataset.