使用类贡献分类的弱监督语义分割

Hatem Ibrahem, Ahmed Salem, Bilel Yagoub, Hyun-Soo Kang
{"title":"使用类贡献分类的弱监督语义分割","authors":"Hatem Ibrahem, Ahmed Salem, Bilel Yagoub, Hyun-Soo Kang","doi":"10.1109/ICEIC51217.2021.9369721","DOIUrl":null,"url":null,"abstract":"We propose a new semantic Segmentation technique that depends on the convolutional neural network of Xception using a modified categorical cross-entropy function to perform class contribution classification. We introduce a class contribution function for each class contribution in the image instead of categorical cross-entropy for maximum class classification. This approach is to be used for weakly supervised semantic segmentation (WSSS) using image-level annotation instead of the pixel-level annotations used in fully supervised semantic segmentation. We trained and tested our approach on both PASCAL VOC2007 and VOC2012 datasets. We show that our approach outperformed many other weakly supervised methods, specifically, it can attain a segmentation accuracy of 49.7% on PASCAL VOC2007 test set and an accuracy of 41.3% on PASCAL VOC2012 test set while the network is trained to learn the semantics of the objects in the image using the cheap image label annotation instead of the expensive and time-consuming segmentation masks.","PeriodicalId":170294,"journal":{"name":"2021 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CCC: Weakly Supervised Semantic Segmentation using Class Contribution Classification\",\"authors\":\"Hatem Ibrahem, Ahmed Salem, Bilel Yagoub, Hyun-Soo Kang\",\"doi\":\"10.1109/ICEIC51217.2021.9369721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new semantic Segmentation technique that depends on the convolutional neural network of Xception using a modified categorical cross-entropy function to perform class contribution classification. We introduce a class contribution function for each class contribution in the image instead of categorical cross-entropy for maximum class classification. This approach is to be used for weakly supervised semantic segmentation (WSSS) using image-level annotation instead of the pixel-level annotations used in fully supervised semantic segmentation. We trained and tested our approach on both PASCAL VOC2007 and VOC2012 datasets. We show that our approach outperformed many other weakly supervised methods, specifically, it can attain a segmentation accuracy of 49.7% on PASCAL VOC2007 test set and an accuracy of 41.3% on PASCAL VOC2012 test set while the network is trained to learn the semantics of the objects in the image using the cheap image label annotation instead of the expensive and time-consuming segmentation masks.\",\"PeriodicalId\":170294,\"journal\":{\"name\":\"2021 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIC51217.2021.9369721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC51217.2021.9369721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的语义分割技术,该技术依赖于Xception的卷积神经网络,使用改进的分类交叉熵函数来进行类贡献分类。我们为图像中的每个类贡献引入一个类贡献函数,而不是分类交叉熵,以实现最大的类分类。这种方法将用于弱监督语义分割(WSSS),使用图像级注释代替完全监督语义分割中使用的像素级注释。我们在PASCAL VOC2007和VOC2012数据集上训练和测试了我们的方法。结果表明,该方法优于其他弱监督方法,在PASCAL VOC2007测试集上的分割准确率为49.7%,在PASCAL VOC2012测试集上的分割准确率为41.3%,同时使用便宜的图像标签标注代替昂贵且耗时的分割掩码来训练网络学习图像中物体的语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CCC: Weakly Supervised Semantic Segmentation using Class Contribution Classification
We propose a new semantic Segmentation technique that depends on the convolutional neural network of Xception using a modified categorical cross-entropy function to perform class contribution classification. We introduce a class contribution function for each class contribution in the image instead of categorical cross-entropy for maximum class classification. This approach is to be used for weakly supervised semantic segmentation (WSSS) using image-level annotation instead of the pixel-level annotations used in fully supervised semantic segmentation. We trained and tested our approach on both PASCAL VOC2007 and VOC2012 datasets. We show that our approach outperformed many other weakly supervised methods, specifically, it can attain a segmentation accuracy of 49.7% on PASCAL VOC2007 test set and an accuracy of 41.3% on PASCAL VOC2012 test set while the network is trained to learn the semantics of the objects in the image using the cheap image label annotation instead of the expensive and time-consuming segmentation masks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信