行走机器人自主控制的机器学习算法

S. Bhattacharya, S. Dutta, T. Maiti, M. Miura-Mattausch, D. Navarro, H. Mattausch
{"title":"行走机器人自主控制的机器学习算法","authors":"S. Bhattacharya, S. Dutta, T. Maiti, M. Miura-Mattausch, D. Navarro, H. Mattausch","doi":"10.1109/ISDCS.2018.8379644","DOIUrl":null,"url":null,"abstract":"This work presents our development of autonomous walking robot control using machine learning algorithm. We have investigated sensor driven walking robot movement to develop supervised learning based control algorithm using neural network methods. We used robots hardware data such as pressure sensor data for accurate neural network (NN) classification. The analyzed result shows that ∼25–30 numbers of hidden neurons will perform the best result in terms of mean square error (mse), error-gradient, learning time and regression for small scale data analysis. The analyzed results are useful for next generation FPGA based artificial intelligence (AI) chip development for robot movement control.","PeriodicalId":374239,"journal":{"name":"2018 International Symposium on Devices, Circuits and Systems (ISDCS)","volume":"379 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Machine learning algorithm for autonomous control of walking robot\",\"authors\":\"S. Bhattacharya, S. Dutta, T. Maiti, M. Miura-Mattausch, D. Navarro, H. Mattausch\",\"doi\":\"10.1109/ISDCS.2018.8379644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents our development of autonomous walking robot control using machine learning algorithm. We have investigated sensor driven walking robot movement to develop supervised learning based control algorithm using neural network methods. We used robots hardware data such as pressure sensor data for accurate neural network (NN) classification. The analyzed result shows that ∼25–30 numbers of hidden neurons will perform the best result in terms of mean square error (mse), error-gradient, learning time and regression for small scale data analysis. The analyzed results are useful for next generation FPGA based artificial intelligence (AI) chip development for robot movement control.\",\"PeriodicalId\":374239,\"journal\":{\"name\":\"2018 International Symposium on Devices, Circuits and Systems (ISDCS)\",\"volume\":\"379 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Symposium on Devices, Circuits and Systems (ISDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDCS.2018.8379644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on Devices, Circuits and Systems (ISDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDCS.2018.8379644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

这项工作介绍了我们使用机器学习算法的自主步行机器人控制的发展。研究了传感器驱动的步行机器人运动,利用神经网络方法开发了基于监督学习的控制算法。我们使用机器人硬件数据(如压力传感器数据)进行精确的神经网络分类。分析结果表明,在小规模数据分析中,25-30个隐藏神经元在均方误差(mse)、误差梯度、学习时间和回归方面表现最佳。分析结果可为下一代基于FPGA的机器人运动控制人工智能芯片的开发提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning algorithm for autonomous control of walking robot
This work presents our development of autonomous walking robot control using machine learning algorithm. We have investigated sensor driven walking robot movement to develop supervised learning based control algorithm using neural network methods. We used robots hardware data such as pressure sensor data for accurate neural network (NN) classification. The analyzed result shows that ∼25–30 numbers of hidden neurons will perform the best result in terms of mean square error (mse), error-gradient, learning time and regression for small scale data analysis. The analyzed results are useful for next generation FPGA based artificial intelligence (AI) chip development for robot movement control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信