自对准石墨烯- sic和石墨烯- si mosfet在75毫米晶圆

J. Moon, D. Curtis, M. Hu, S. Bui, D. Wheeler, T. Marshall, H. Sharifi, D. Wong, D. Gaskill, P. Campbell, P. Asbeck, G. Jernigan, J. Tedesco, B. Vanmil, R. Myers-Ward, C. Eddy, X. Weng, J. Robinson, M. Fanton
{"title":"自对准石墨烯- sic和石墨烯- si mosfet在75毫米晶圆","authors":"J. Moon, D. Curtis, M. Hu, S. Bui, D. Wheeler, T. Marshall, H. Sharifi, D. Wong, D. Gaskill, P. Campbell, P. Asbeck, G. Jernigan, J. Tedesco, B. Vanmil, R. Myers-Ward, C. Eddy, X. Weng, J. Robinson, M. Fanton","doi":"10.1109/DRC.2010.5551910","DOIUrl":null,"url":null,"abstract":"Graphene has shown the highest carrier Hall mobility of >100,000 cm2/Vs with theoretical saturation velocity (Vsat) and source-injection velocity converging at ∼5E7 cm/sec [1] and ∼6E7 cm/sec, respectively. A potential combination of high current-carrying density, transconductance, and low access resistance could make graphene an attractive candidate for high-performance RF applications. So far, epitaxial graphene MOSFETs [2] in the early stages of development have revealed technical challenges: the current-voltage characteristics are quasi-linear with weak saturation behaviors and low transconductance per gate capacitance (<100 mS/mm). In addition, the Ion/Ioff ratio has been <10. While epitaxial graphene RF FETs with Fmax of 14 GHz per 2 µm gate length were demonstrated in a self-aligned top-gated layout with the highest ever on-state current density of 3 A/mm at Vds = 5 V, field-effect mobility was limited below 200 cm2/Vs. There are only a few reports of a graphene-on-Si platform with on-stage current <0.02 mA/mm. [3]","PeriodicalId":396875,"journal":{"name":"68th Device Research Conference","volume":"311 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Self-aligned graphene-on-SiC and graphene-on-Si MOSFETs on 75 mm wafers\",\"authors\":\"J. Moon, D. Curtis, M. Hu, S. Bui, D. Wheeler, T. Marshall, H. Sharifi, D. Wong, D. Gaskill, P. Campbell, P. Asbeck, G. Jernigan, J. Tedesco, B. Vanmil, R. Myers-Ward, C. Eddy, X. Weng, J. Robinson, M. Fanton\",\"doi\":\"10.1109/DRC.2010.5551910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene has shown the highest carrier Hall mobility of >100,000 cm2/Vs with theoretical saturation velocity (Vsat) and source-injection velocity converging at ∼5E7 cm/sec [1] and ∼6E7 cm/sec, respectively. A potential combination of high current-carrying density, transconductance, and low access resistance could make graphene an attractive candidate for high-performance RF applications. So far, epitaxial graphene MOSFETs [2] in the early stages of development have revealed technical challenges: the current-voltage characteristics are quasi-linear with weak saturation behaviors and low transconductance per gate capacitance (<100 mS/mm). In addition, the Ion/Ioff ratio has been <10. While epitaxial graphene RF FETs with Fmax of 14 GHz per 2 µm gate length were demonstrated in a self-aligned top-gated layout with the highest ever on-state current density of 3 A/mm at Vds = 5 V, field-effect mobility was limited below 200 cm2/Vs. There are only a few reports of a graphene-on-Si platform with on-stage current <0.02 mA/mm. [3]\",\"PeriodicalId\":396875,\"journal\":{\"name\":\"68th Device Research Conference\",\"volume\":\"311 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"68th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2010.5551910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"68th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2010.5551910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

石墨烯的载流子霍尔迁移率最高,>100,000 cm2/Vs,理论饱和速度(Vsat)和源注入速度分别收敛于~ 5E7 cm/sec[1]和~ 6E7 cm/sec。高载流密度、跨导性和低接入电阻的潜在组合可能使石墨烯成为高性能射频应用的有吸引力的候选者。到目前为止,外延石墨烯mosfet[2]在发展的早期阶段已经暴露出技术挑战:电流-电压特性是准线性的,具有弱饱和行为和低跨导/栅极电容(<100 mS/mm)。此外,离子/ off比一直<10。虽然外延石墨烯射频场效应管的Fmax为14 GHz / 2µm栅极长度,在自校准顶门控布局下,在Vds = 5 V时具有最高的导通电流密度3 a /mm,但场效应迁移率被限制在200 cm2/Vs以下。目前仅有少数关于台上电流<0.02 mA/mm的硅基石墨烯平台的报道。[3]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-aligned graphene-on-SiC and graphene-on-Si MOSFETs on 75 mm wafers
Graphene has shown the highest carrier Hall mobility of >100,000 cm2/Vs with theoretical saturation velocity (Vsat) and source-injection velocity converging at ∼5E7 cm/sec [1] and ∼6E7 cm/sec, respectively. A potential combination of high current-carrying density, transconductance, and low access resistance could make graphene an attractive candidate for high-performance RF applications. So far, epitaxial graphene MOSFETs [2] in the early stages of development have revealed technical challenges: the current-voltage characteristics are quasi-linear with weak saturation behaviors and low transconductance per gate capacitance (<100 mS/mm). In addition, the Ion/Ioff ratio has been <10. While epitaxial graphene RF FETs with Fmax of 14 GHz per 2 µm gate length were demonstrated in a self-aligned top-gated layout with the highest ever on-state current density of 3 A/mm at Vds = 5 V, field-effect mobility was limited below 200 cm2/Vs. There are only a few reports of a graphene-on-Si platform with on-stage current <0.02 mA/mm. [3]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信