一种用于材料无损评价和缺陷检测的后向散射超声换能器

C. Chung, Y. Lee, S. Kuo, Chu-Lin Chiu
{"title":"一种用于材料无损评价和缺陷检测的后向散射超声换能器","authors":"C. Chung, Y. Lee, S. Kuo, Chu-Lin Chiu","doi":"10.1109/ULTSYM.2005.1602824","DOIUrl":null,"url":null,"abstract":"This research proposes a new type of focusing ultrasound transducer called Analytical Back Scattering Arrayed Ultrasound Transducer (ABSAUT). Different to the conventional focusing ultrasound transducer, an additional PVDF film with patterned electrodes is attached to the concave spherical surface for collecting back scattered ultrasound. It is designed for detecting and characterizing internal defects of a sample in an analytic and quantitative way via multiple back scattering ultrasound signals collection. Standard testing including pulse echo, transducer defocusing testing and sound field scanning are carried out and all the information is recorded for performance verification. Furthermore, a powerful angular spectrum algorithm is involved in the study for time-domain waveform prediction measured by the PVDF sensing elements. In this work, we have proved that ABSAUT can collect the reflected or back scattering sound wave information from the sample under testing. And the time-domain waveform predicted by angular spectrum algorithm also shows good agreement with the data measured by PVDF sensing elements. Finally, future improvements and applications of the ABSAUT will be addressed.","PeriodicalId":302030,"journal":{"name":"IEEE Ultrasonics Symposium, 2005.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel back scattering ultrasound transducer for non-destructive material evaluation and defect inspection\",\"authors\":\"C. Chung, Y. Lee, S. Kuo, Chu-Lin Chiu\",\"doi\":\"10.1109/ULTSYM.2005.1602824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes a new type of focusing ultrasound transducer called Analytical Back Scattering Arrayed Ultrasound Transducer (ABSAUT). Different to the conventional focusing ultrasound transducer, an additional PVDF film with patterned electrodes is attached to the concave spherical surface for collecting back scattered ultrasound. It is designed for detecting and characterizing internal defects of a sample in an analytic and quantitative way via multiple back scattering ultrasound signals collection. Standard testing including pulse echo, transducer defocusing testing and sound field scanning are carried out and all the information is recorded for performance verification. Furthermore, a powerful angular spectrum algorithm is involved in the study for time-domain waveform prediction measured by the PVDF sensing elements. In this work, we have proved that ABSAUT can collect the reflected or back scattering sound wave information from the sample under testing. And the time-domain waveform predicted by angular spectrum algorithm also shows good agreement with the data measured by PVDF sensing elements. Finally, future improvements and applications of the ABSAUT will be addressed.\",\"PeriodicalId\":302030,\"journal\":{\"name\":\"IEEE Ultrasonics Symposium, 2005.\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Ultrasonics Symposium, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2005.1602824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Ultrasonics Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2005.1602824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究提出了一种新型聚焦型超声换能器——解析后向散射阵列超声换能器(ABSAUT)。与传统聚焦超声换能器不同的是,该换能器在凹球面上附加了一层带有图案电极的PVDF膜,用于收集散射超声。它是通过多次反向散射超声信号采集,以分析和定量的方式检测和表征样品内部缺陷。标准测试包括脉冲回波、换能器离焦测试和声场扫描,并记录所有信息以进行性能验证。此外,研究了一种强大的角谱算法,用于PVDF传感元件测量的时域波形预测。在这项工作中,我们证明了abaut可以从被测样品中收集反射或后向散射声波信息。角谱算法预测的时域波形与PVDF传感元件的实测数据吻合较好。最后,讨论了abaut未来的改进和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel back scattering ultrasound transducer for non-destructive material evaluation and defect inspection
This research proposes a new type of focusing ultrasound transducer called Analytical Back Scattering Arrayed Ultrasound Transducer (ABSAUT). Different to the conventional focusing ultrasound transducer, an additional PVDF film with patterned electrodes is attached to the concave spherical surface for collecting back scattered ultrasound. It is designed for detecting and characterizing internal defects of a sample in an analytic and quantitative way via multiple back scattering ultrasound signals collection. Standard testing including pulse echo, transducer defocusing testing and sound field scanning are carried out and all the information is recorded for performance verification. Furthermore, a powerful angular spectrum algorithm is involved in the study for time-domain waveform prediction measured by the PVDF sensing elements. In this work, we have proved that ABSAUT can collect the reflected or back scattering sound wave information from the sample under testing. And the time-domain waveform predicted by angular spectrum algorithm also shows good agreement with the data measured by PVDF sensing elements. Finally, future improvements and applications of the ABSAUT will be addressed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信