{"title":"静电MEMS的动态偏转","authors":"N. Ghoussoub, Yujin Guo","doi":"10.1109/ICMENS.2005.43","DOIUrl":null,"url":null,"abstract":"An idealized electrostatic MEMS device, consisting of a thin dielectric elastic membrane supported above a rigid ground plate, is analyzed. The upper surface of the membrane is coated with a thin conducting film. When a voltage V is applied to the thin conducting film, the membrane deflects towards the ground plate and if V is increased beyond a critical value V* (the pull-in voltage), touchdown occurs at finite time creating a so-called \"pull-in instability\". The mathematical model lends to a nonlinear parabolic problem for the dynamic deflection of the thin dielectric membrane. By allowing for a spatially varying permittivity profile, it is shown that the pull-in instability can be delayed until larger values of V* and that greater pull-in distances can be achieved. Applying various analytical and numerical techniques, finite touchdown time and a refined description of MEMS touchdown behavior are also discussed.","PeriodicalId":185824,"journal":{"name":"2005 International Conference on MEMS,NANO and Smart Systems","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic deflection of electrostatic MEMS\",\"authors\":\"N. Ghoussoub, Yujin Guo\",\"doi\":\"10.1109/ICMENS.2005.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An idealized electrostatic MEMS device, consisting of a thin dielectric elastic membrane supported above a rigid ground plate, is analyzed. The upper surface of the membrane is coated with a thin conducting film. When a voltage V is applied to the thin conducting film, the membrane deflects towards the ground plate and if V is increased beyond a critical value V* (the pull-in voltage), touchdown occurs at finite time creating a so-called \\\"pull-in instability\\\". The mathematical model lends to a nonlinear parabolic problem for the dynamic deflection of the thin dielectric membrane. By allowing for a spatially varying permittivity profile, it is shown that the pull-in instability can be delayed until larger values of V* and that greater pull-in distances can be achieved. Applying various analytical and numerical techniques, finite touchdown time and a refined description of MEMS touchdown behavior are also discussed.\",\"PeriodicalId\":185824,\"journal\":{\"name\":\"2005 International Conference on MEMS,NANO and Smart Systems\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Conference on MEMS,NANO and Smart Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMENS.2005.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Conference on MEMS,NANO and Smart Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMENS.2005.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An idealized electrostatic MEMS device, consisting of a thin dielectric elastic membrane supported above a rigid ground plate, is analyzed. The upper surface of the membrane is coated with a thin conducting film. When a voltage V is applied to the thin conducting film, the membrane deflects towards the ground plate and if V is increased beyond a critical value V* (the pull-in voltage), touchdown occurs at finite time creating a so-called "pull-in instability". The mathematical model lends to a nonlinear parabolic problem for the dynamic deflection of the thin dielectric membrane. By allowing for a spatially varying permittivity profile, it is shown that the pull-in instability can be delayed until larger values of V* and that greater pull-in distances can be achieved. Applying various analytical and numerical techniques, finite touchdown time and a refined description of MEMS touchdown behavior are also discussed.