Grégoire Surrel, F. Rincón, S. Murali, David Atienza Alonso
{"title":"用于阻塞性睡眠呼吸暂停实时筛查的低功耗可穿戴系统","authors":"Grégoire Surrel, F. Rincón, S. Murali, David Atienza Alonso","doi":"10.1109/ISVLSI.2016.51","DOIUrl":null,"url":null,"abstract":"Obstructive Sleep Apnea (OSA) is one of the main sleep disorders, but only 10% of the cases are diagnosed. Moreover, there is a lack of tools for long-term monitoring of OSA, since current systems are too bulky and intrusive to be used continuously. In this context, recent studies have shown that it is possible to detect it automatically based on single-lead ECG recordings. This approach can be used in non-invasive smart wearable sensors which measure and process bio-signals online. This work focuses on the implementation, optimization and integration of an algorithm for OSA detection for preventive health-care. It relies on a frequency-domain analysis while targeting an ultra-low power embedded wearable device. As it must share its resources usage with other computations, it must be as lightweight as possible. Our current results based on publicly available signals show a classification accuracy of up to 83.2% for both the offline analysis and the embedded online one. This system gives an even better classification accuracy than the best offline algorithm when using the same features for classification [1].","PeriodicalId":140647,"journal":{"name":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Low-Power Wearable System for Real-Time Screening of Obstructive Sleep Apnea\",\"authors\":\"Grégoire Surrel, F. Rincón, S. Murali, David Atienza Alonso\",\"doi\":\"10.1109/ISVLSI.2016.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obstructive Sleep Apnea (OSA) is one of the main sleep disorders, but only 10% of the cases are diagnosed. Moreover, there is a lack of tools for long-term monitoring of OSA, since current systems are too bulky and intrusive to be used continuously. In this context, recent studies have shown that it is possible to detect it automatically based on single-lead ECG recordings. This approach can be used in non-invasive smart wearable sensors which measure and process bio-signals online. This work focuses on the implementation, optimization and integration of an algorithm for OSA detection for preventive health-care. It relies on a frequency-domain analysis while targeting an ultra-low power embedded wearable device. As it must share its resources usage with other computations, it must be as lightweight as possible. Our current results based on publicly available signals show a classification accuracy of up to 83.2% for both the offline analysis and the embedded online one. This system gives an even better classification accuracy than the best offline algorithm when using the same features for classification [1].\",\"PeriodicalId\":140647,\"journal\":{\"name\":\"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2016.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2016.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-Power Wearable System for Real-Time Screening of Obstructive Sleep Apnea
Obstructive Sleep Apnea (OSA) is one of the main sleep disorders, but only 10% of the cases are diagnosed. Moreover, there is a lack of tools for long-term monitoring of OSA, since current systems are too bulky and intrusive to be used continuously. In this context, recent studies have shown that it is possible to detect it automatically based on single-lead ECG recordings. This approach can be used in non-invasive smart wearable sensors which measure and process bio-signals online. This work focuses on the implementation, optimization and integration of an algorithm for OSA detection for preventive health-care. It relies on a frequency-domain analysis while targeting an ultra-low power embedded wearable device. As it must share its resources usage with other computations, it must be as lightweight as possible. Our current results based on publicly available signals show a classification accuracy of up to 83.2% for both the offline analysis and the embedded online one. This system gives an even better classification accuracy than the best offline algorithm when using the same features for classification [1].