利用局部结构预测挖掘蛋白质中的残馀接触

Mohammed J. Zaki, Shanrong Jin, C. Bystroff
{"title":"利用局部结构预测挖掘蛋白质中的残馀接触","authors":"Mohammed J. Zaki, Shanrong Jin, C. Bystroff","doi":"10.1109/BIBE.2000.889604","DOIUrl":null,"url":null,"abstract":"In this paper, we develop data mining techniques to predict 3D contact potentials among protein residues (or amino acids) based on the hierarchical nucleation-propagation model of protein folding. We apply a hybrid approach, using a hidden Markov model (HMM) to extract folding initiation sites, and then apply association mining to discover contact potentials. The new hybrid approach achieves accuracy results better than those reported previously.","PeriodicalId":196846,"journal":{"name":"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Mining residue contacts in proteins using local structure predictions\",\"authors\":\"Mohammed J. Zaki, Shanrong Jin, C. Bystroff\",\"doi\":\"10.1109/BIBE.2000.889604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop data mining techniques to predict 3D contact potentials among protein residues (or amino acids) based on the hierarchical nucleation-propagation model of protein folding. We apply a hybrid approach, using a hidden Markov model (HMM) to extract folding initiation sites, and then apply association mining to discover contact potentials. The new hybrid approach achieves accuracy results better than those reported previously.\",\"PeriodicalId\":196846,\"journal\":{\"name\":\"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2000.889604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2000.889604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

在本文中,我们基于蛋白质折叠的分层成核-传播模型开发了数据挖掘技术来预测蛋白质残基(或氨基酸)之间的三维接触电位。我们采用了一种混合方法,使用隐马尔可夫模型(HMM)提取折叠起始位点,然后使用关联挖掘来发现接触电位。新的混合方法比以前报道的方法获得了更好的精度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining residue contacts in proteins using local structure predictions
In this paper, we develop data mining techniques to predict 3D contact potentials among protein residues (or amino acids) based on the hierarchical nucleation-propagation model of protein folding. We apply a hybrid approach, using a hidden Markov model (HMM) to extract folding initiation sites, and then apply association mining to discover contact potentials. The new hybrid approach achieves accuracy results better than those reported previously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信