{"title":"使用时变滑动面饱和作动器的线性不稳定对象的鲁棒镇定:初步结果","authors":"M. Corradini, G. Orlando, G. Parlangeli","doi":"10.1109/VSS.2006.1644540","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of a time-varying sliding surface for the robust stabilization of linear uncertain SISO plants with saturating actuators. A constructive procedure for its design is also proposed, and stability of the closed loop system is proved in the null controllable region. The proposed technique does not require plant stability, and can manage any bounded disturbance term satisfying the matching condition. Theoretical results have been validated by simulation using a third order plant","PeriodicalId":146618,"journal":{"name":"International Workshop on Variable Structure Systems, 2006. VSS'06.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust stabilization of linear unstable plants with saturating actuators using a time varying sliding surface: preliminary results\",\"authors\":\"M. Corradini, G. Orlando, G. Parlangeli\",\"doi\":\"10.1109/VSS.2006.1644540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the use of a time-varying sliding surface for the robust stabilization of linear uncertain SISO plants with saturating actuators. A constructive procedure for its design is also proposed, and stability of the closed loop system is proved in the null controllable region. The proposed technique does not require plant stability, and can manage any bounded disturbance term satisfying the matching condition. Theoretical results have been validated by simulation using a third order plant\",\"PeriodicalId\":146618,\"journal\":{\"name\":\"International Workshop on Variable Structure Systems, 2006. VSS'06.\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Variable Structure Systems, 2006. VSS'06.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSS.2006.1644540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Variable Structure Systems, 2006. VSS'06.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSS.2006.1644540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust stabilization of linear unstable plants with saturating actuators using a time varying sliding surface: preliminary results
This paper proposes the use of a time-varying sliding surface for the robust stabilization of linear uncertain SISO plants with saturating actuators. A constructive procedure for its design is also proposed, and stability of the closed loop system is proved in the null controllable region. The proposed technique does not require plant stability, and can manage any bounded disturbance term satisfying the matching condition. Theoretical results have been validated by simulation using a third order plant