{"title":"改进了力滤波补偿器的触觉交互控制","authors":"J. Podobnik, M. Munih","doi":"10.1109/ICORR.2005.1501075","DOIUrl":null,"url":null,"abstract":"Stability of a haptic interface is essential for safe and quality haptic interaction. This paper addresses the contact instability of admittance control haptic interface in free space. Experiments with special dedicated system for measuring grasp force have been performed to explore conditions of contact instability. Baseline experimental results are here compared to simulations from a model of haptic interaction. The model serves also as a basis for stability and performance improvements with a special compensator filter for force filtering. Experimental and simulation results both confirm stability improvements.","PeriodicalId":131431,"journal":{"name":"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improved haptic interaction control with force filter compensator\",\"authors\":\"J. Podobnik, M. Munih\",\"doi\":\"10.1109/ICORR.2005.1501075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stability of a haptic interface is essential for safe and quality haptic interaction. This paper addresses the contact instability of admittance control haptic interface in free space. Experiments with special dedicated system for measuring grasp force have been performed to explore conditions of contact instability. Baseline experimental results are here compared to simulations from a model of haptic interaction. The model serves also as a basis for stability and performance improvements with a special compensator filter for force filtering. Experimental and simulation results both confirm stability improvements.\",\"PeriodicalId\":131431,\"journal\":{\"name\":\"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2005.1501075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2005.1501075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved haptic interaction control with force filter compensator
Stability of a haptic interface is essential for safe and quality haptic interaction. This paper addresses the contact instability of admittance control haptic interface in free space. Experiments with special dedicated system for measuring grasp force have been performed to explore conditions of contact instability. Baseline experimental results are here compared to simulations from a model of haptic interaction. The model serves also as a basis for stability and performance improvements with a special compensator filter for force filtering. Experimental and simulation results both confirm stability improvements.