Daniel Greenfield, A. Banerjee, Jeong-Gun Lee, S. Moore
{"title":"Rent’s规则对NoC设计的启示及其容错性","authors":"Daniel Greenfield, A. Banerjee, Jeong-Gun Lee, S. Moore","doi":"10.1109/NOCS.2007.26","DOIUrl":null,"url":null,"abstract":"Rent's rule is a powerful tool for exploring VLSI design and technology scaling issues. This paper applies the principles of Rent's rule to the analysis of networks-on-chip (NoC). In particular, a bandwidth-version of Rent's rule is derived, and its implications for future NoC scaling examined. Hop-length distributions for Rent's and other traffic models are then applied to analyse NoC router activity. For fault-tolerant design, a new type of router is proposed based on this analysis, and it is evaluated for mutability and its impact on congestion by further use of the hop-length distributions. It is shown that the choice of traffic model has a significant impact on scaling behaviour, design and fault-tolerant analysis","PeriodicalId":132772,"journal":{"name":"First International Symposium on Networks-on-Chip (NOCS'07)","volume":"486 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Implications of Rent's Rule for NoC Design and Its Fault-Tolerance\",\"authors\":\"Daniel Greenfield, A. Banerjee, Jeong-Gun Lee, S. Moore\",\"doi\":\"10.1109/NOCS.2007.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rent's rule is a powerful tool for exploring VLSI design and technology scaling issues. This paper applies the principles of Rent's rule to the analysis of networks-on-chip (NoC). In particular, a bandwidth-version of Rent's rule is derived, and its implications for future NoC scaling examined. Hop-length distributions for Rent's and other traffic models are then applied to analyse NoC router activity. For fault-tolerant design, a new type of router is proposed based on this analysis, and it is evaluated for mutability and its impact on congestion by further use of the hop-length distributions. It is shown that the choice of traffic model has a significant impact on scaling behaviour, design and fault-tolerant analysis\",\"PeriodicalId\":132772,\"journal\":{\"name\":\"First International Symposium on Networks-on-Chip (NOCS'07)\",\"volume\":\"486 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Symposium on Networks-on-Chip (NOCS'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOCS.2007.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Symposium on Networks-on-Chip (NOCS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOCS.2007.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implications of Rent's Rule for NoC Design and Its Fault-Tolerance
Rent's rule is a powerful tool for exploring VLSI design and technology scaling issues. This paper applies the principles of Rent's rule to the analysis of networks-on-chip (NoC). In particular, a bandwidth-version of Rent's rule is derived, and its implications for future NoC scaling examined. Hop-length distributions for Rent's and other traffic models are then applied to analyse NoC router activity. For fault-tolerant design, a new type of router is proposed based on this analysis, and it is evaluated for mutability and its impact on congestion by further use of the hop-length distributions. It is shown that the choice of traffic model has a significant impact on scaling behaviour, design and fault-tolerant analysis