存在截面依赖性和动力异质性的短动力板的估计

Robert Gilhooly, M. Weale, Tomasz Wieladek
{"title":"存在截面依赖性和动力异质性的短动力板的估计","authors":"Robert Gilhooly, M. Weale, Tomasz Wieladek","doi":"10.2139/ssrn.2689565","DOIUrl":null,"url":null,"abstract":"We propose a Bayesian approach to dynamic panel estimation in the presence of cross-sectional dependence and dynamic heterogeneity which is suitable for inference in short panels, unlike alternative estimators. Monte Carlo simulations indicate that our estimator produces less bias, and a lower root mean squared error, than existing estimators. The method is illustrated by estimating a panel VAR on sector level data for labour productivity and hours worked growth for Canada, Germany, France, Italy, the UK and the US from 1992 Q1 to 2011 Q3. We use historical decompositions to examine the determinants of recent output growth in each country. This exercise demonstrates that failure to take cross-sectional dependence into account leads to highly misleading results.","PeriodicalId":289235,"journal":{"name":"ERN: Econometric Studies of Labor Markets & Household Behavior (Topic)","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimation of Short Dynamic Panels in The Presence of Cross-Sectional Dependence and Dynamic Heterogeneity\",\"authors\":\"Robert Gilhooly, M. Weale, Tomasz Wieladek\",\"doi\":\"10.2139/ssrn.2689565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a Bayesian approach to dynamic panel estimation in the presence of cross-sectional dependence and dynamic heterogeneity which is suitable for inference in short panels, unlike alternative estimators. Monte Carlo simulations indicate that our estimator produces less bias, and a lower root mean squared error, than existing estimators. The method is illustrated by estimating a panel VAR on sector level data for labour productivity and hours worked growth for Canada, Germany, France, Italy, the UK and the US from 1992 Q1 to 2011 Q3. We use historical decompositions to examine the determinants of recent output growth in each country. This exercise demonstrates that failure to take cross-sectional dependence into account leads to highly misleading results.\",\"PeriodicalId\":289235,\"journal\":{\"name\":\"ERN: Econometric Studies of Labor Markets & Household Behavior (Topic)\",\"volume\":\"258 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Econometric Studies of Labor Markets & Household Behavior (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2689565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Econometric Studies of Labor Markets & Household Behavior (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2689565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种贝叶斯方法来动态面板估计在横截面依赖性和动态异质性的存在,这是适合于短面板的推理,不像替代估计。蒙特卡罗模拟表明,与现有的估计器相比,我们的估计器产生更小的偏差和更低的均方根误差。通过估算加拿大、德国、法国、意大利、英国和美国从1992年第一季度到2011年第三季度的劳动生产率和工作时间增长的行业层面数据的面板VAR,可以说明该方法。我们使用历史分解来检验每个国家近期产出增长的决定因素。这个练习表明,不考虑横截面依赖性会导致高度误导性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Short Dynamic Panels in The Presence of Cross-Sectional Dependence and Dynamic Heterogeneity
We propose a Bayesian approach to dynamic panel estimation in the presence of cross-sectional dependence and dynamic heterogeneity which is suitable for inference in short panels, unlike alternative estimators. Monte Carlo simulations indicate that our estimator produces less bias, and a lower root mean squared error, than existing estimators. The method is illustrated by estimating a panel VAR on sector level data for labour productivity and hours worked growth for Canada, Germany, France, Italy, the UK and the US from 1992 Q1 to 2011 Q3. We use historical decompositions to examine the determinants of recent output growth in each country. This exercise demonstrates that failure to take cross-sectional dependence into account leads to highly misleading results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信