基于图神经网络的分层语言知识在假新闻检测中的应用

Fan Xu, Minghao Li, Shuixiu Wu, Qi Huang, Keyu Yan, Mingwen Wang
{"title":"基于图神经网络的分层语言知识在假新闻检测中的应用","authors":"Fan Xu, Minghao Li, Shuixiu Wu, Qi Huang, Keyu Yan, Mingwen Wang","doi":"10.1109/ICCEAI55464.2022.00137","DOIUrl":null,"url":null,"abstract":"Fake news can be propagated quickly across online microblogs, resulting in a series of adverse impacts on our daily lives. Traditional fake news detection models focus on incorporating writing styles, or world knowledge (e.g., triples). Nevertheless, writing styles are easy to imitate. Different from world knowledge, in this paper, we propose a novel hierarchical language knowledge-driven fake news detection (HLKFND) framework. More specifically, we first conduct entity linking to obtain the entity words for a given news text after removing stop words. We also extract the specific topic words through the LDA (Latent Dirichlet Allocation) for the news text. Then, we acquire the extended entities context through an external knowledge base for the extracted entity words. Next, we extract language context (the sememe of a Chinese word based on the HowNet) for the extracted topic words. After that, we construct a powerful language-entity graph that includes the previous words in the news text, the extended entity context, and the extended language context. Finally, we successfully combined the language context and the entity context under a graph convolutional networks framework. Our experimental results demonstrate that our HLKFND outperforms strong recent baselines on Chinese benchmark dataset in fake news detection.","PeriodicalId":414181,"journal":{"name":"2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Hierarchical Language Knowledge in Graph Neural Networks for Fake News Detection\",\"authors\":\"Fan Xu, Minghao Li, Shuixiu Wu, Qi Huang, Keyu Yan, Mingwen Wang\",\"doi\":\"10.1109/ICCEAI55464.2022.00137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fake news can be propagated quickly across online microblogs, resulting in a series of adverse impacts on our daily lives. Traditional fake news detection models focus on incorporating writing styles, or world knowledge (e.g., triples). Nevertheless, writing styles are easy to imitate. Different from world knowledge, in this paper, we propose a novel hierarchical language knowledge-driven fake news detection (HLKFND) framework. More specifically, we first conduct entity linking to obtain the entity words for a given news text after removing stop words. We also extract the specific topic words through the LDA (Latent Dirichlet Allocation) for the news text. Then, we acquire the extended entities context through an external knowledge base for the extracted entity words. Next, we extract language context (the sememe of a Chinese word based on the HowNet) for the extracted topic words. After that, we construct a powerful language-entity graph that includes the previous words in the news text, the extended entity context, and the extended language context. Finally, we successfully combined the language context and the entity context under a graph convolutional networks framework. Our experimental results demonstrate that our HLKFND outperforms strong recent baselines on Chinese benchmark dataset in fake news detection.\",\"PeriodicalId\":414181,\"journal\":{\"name\":\"2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEAI55464.2022.00137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEAI55464.2022.00137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假新闻可以通过网络微博迅速传播,对我们的日常生活产生一系列不利影响。传统的假新闻检测模型侧重于结合写作风格或世界知识(例如,三元组)。然而,写作风格很容易模仿。与世界知识不同,本文提出了一种新的层次语言知识驱动的假新闻检测框架。更具体地说,我们首先对给定的新闻文本进行实体链接,去掉停止词后获取实体词。我们还通过LDA (Latent Dirichlet Allocation)对新闻文本进行了特定主题词的提取。然后,我们通过抽取实体词的外部知识库获取扩展实体上下文。接下来,我们为提取的主题词提取语言上下文(基于知网的汉语单词的义素)。之后,我们构建了一个强大的语言-实体图,其中包括新闻文本中前面的单词、扩展的实体上下文和扩展的语言上下文。最后,我们成功地将语言上下文和实体上下文结合在图卷积网络框架下。我们的实验结果表明,我们的HLKFND在假新闻检测方面优于中国基准数据集上最近的强大基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Hierarchical Language Knowledge in Graph Neural Networks for Fake News Detection
Fake news can be propagated quickly across online microblogs, resulting in a series of adverse impacts on our daily lives. Traditional fake news detection models focus on incorporating writing styles, or world knowledge (e.g., triples). Nevertheless, writing styles are easy to imitate. Different from world knowledge, in this paper, we propose a novel hierarchical language knowledge-driven fake news detection (HLKFND) framework. More specifically, we first conduct entity linking to obtain the entity words for a given news text after removing stop words. We also extract the specific topic words through the LDA (Latent Dirichlet Allocation) for the news text. Then, we acquire the extended entities context through an external knowledge base for the extracted entity words. Next, we extract language context (the sememe of a Chinese word based on the HowNet) for the extracted topic words. After that, we construct a powerful language-entity graph that includes the previous words in the news text, the extended entity context, and the extended language context. Finally, we successfully combined the language context and the entity context under a graph convolutional networks framework. Our experimental results demonstrate that our HLKFND outperforms strong recent baselines on Chinese benchmark dataset in fake news detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信