定律:量子神经网络的环顾四周和热启动自然梯度下降

Zeyi Tao, Jindi Wu, Qi Xia, Qun Li
{"title":"定律:量子神经网络的环顾四周和热启动自然梯度下降","authors":"Zeyi Tao, Jindi Wu, Qi Xia, Qun Li","doi":"10.1109/QSW59989.2023.00019","DOIUrl":null,"url":null,"abstract":"Variational quantum algorithms (VQAs) have recently received much attention due to their promising performance in Noisy Intermediate-Scale Quantum computers (NISQ). However, VQAs run on parameterized quantum circuits (PQC) with randomly initialized parameters are characterized by barren plateaus (BP) where the gradient vanishes exponentially in the number of qubits. In this paper, we proposed a Look Around Warm-Start (LAWS) quantum natural gradient (QNG) algorithm to mitigate the widespread existing BP issues. LAWS is a combinatorial optimization strategy taking advantage of model parameter initialization and fast convergence of QNG. LAWS repeatedly reinitializes parameter search space for the next iteration parameter update. The reinitialized parameter search space is carefully chosen by sampling the gradient close to the current optimal. Moreover, we present a unified framework (WS-SGD) for integrating parameter initialization techniques into the optimizer. We provide the convergence proof of the proposed framework for both convex and non-convex objective functions based on Polyak-Lojasiewicz (PL) condition. Our experiment results show that the proposed algorithm could mitigate the BP and have better generalization ability in quantum classification problems.","PeriodicalId":254476,"journal":{"name":"2023 IEEE International Conference on Quantum Software (QSW)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"LAWS: Look Around and Warm-Start Natural Gradient Descent for Quantum Neural Networks\",\"authors\":\"Zeyi Tao, Jindi Wu, Qi Xia, Qun Li\",\"doi\":\"10.1109/QSW59989.2023.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variational quantum algorithms (VQAs) have recently received much attention due to their promising performance in Noisy Intermediate-Scale Quantum computers (NISQ). However, VQAs run on parameterized quantum circuits (PQC) with randomly initialized parameters are characterized by barren plateaus (BP) where the gradient vanishes exponentially in the number of qubits. In this paper, we proposed a Look Around Warm-Start (LAWS) quantum natural gradient (QNG) algorithm to mitigate the widespread existing BP issues. LAWS is a combinatorial optimization strategy taking advantage of model parameter initialization and fast convergence of QNG. LAWS repeatedly reinitializes parameter search space for the next iteration parameter update. The reinitialized parameter search space is carefully chosen by sampling the gradient close to the current optimal. Moreover, we present a unified framework (WS-SGD) for integrating parameter initialization techniques into the optimizer. We provide the convergence proof of the proposed framework for both convex and non-convex objective functions based on Polyak-Lojasiewicz (PL) condition. Our experiment results show that the proposed algorithm could mitigate the BP and have better generalization ability in quantum classification problems.\",\"PeriodicalId\":254476,\"journal\":{\"name\":\"2023 IEEE International Conference on Quantum Software (QSW)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Quantum Software (QSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QSW59989.2023.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Quantum Software (QSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QSW59989.2023.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

变分量子算法(VQAs)由于其在有噪声的中等规模量子计算机(NISQ)中具有良好的性能,近年来受到了广泛的关注。然而,运行在参数化量子电路(PQC)上的vqa具有随机初始化参数的特征,其特征是贫瘠高原(BP),其中梯度随量子位数呈指数级消失。在本文中,我们提出了一种Look Around Warm-Start (LAWS)量子自然梯度(QNG)算法来缓解广泛存在的BP问题。LAWS是一种利用模型参数初始化和QNG快速收敛的组合优化策略。LAWS为下一次迭代参数更新反复重新初始化参数搜索空间。重新初始化的参数搜索空间是通过对接近当前最优的梯度进行采样来仔细选择的。此外,我们提出了一个将参数初始化技术集成到优化器中的统一框架(WS-SGD)。我们给出了基于Polyak-Lojasiewicz (PL)条件的凸和非凸目标函数框架的收敛性证明。实验结果表明,该算法在量子分类问题中具有较好的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LAWS: Look Around and Warm-Start Natural Gradient Descent for Quantum Neural Networks
Variational quantum algorithms (VQAs) have recently received much attention due to their promising performance in Noisy Intermediate-Scale Quantum computers (NISQ). However, VQAs run on parameterized quantum circuits (PQC) with randomly initialized parameters are characterized by barren plateaus (BP) where the gradient vanishes exponentially in the number of qubits. In this paper, we proposed a Look Around Warm-Start (LAWS) quantum natural gradient (QNG) algorithm to mitigate the widespread existing BP issues. LAWS is a combinatorial optimization strategy taking advantage of model parameter initialization and fast convergence of QNG. LAWS repeatedly reinitializes parameter search space for the next iteration parameter update. The reinitialized parameter search space is carefully chosen by sampling the gradient close to the current optimal. Moreover, we present a unified framework (WS-SGD) for integrating parameter initialization techniques into the optimizer. We provide the convergence proof of the proposed framework for both convex and non-convex objective functions based on Polyak-Lojasiewicz (PL) condition. Our experiment results show that the proposed algorithm could mitigate the BP and have better generalization ability in quantum classification problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信