论量子动力系统的可观测性

Tristan D. Griffith, Vinod P. Gehlot, M. Balas
{"title":"论量子动力系统的可观测性","authors":"Tristan D. Griffith, Vinod P. Gehlot, M. Balas","doi":"10.1115/imece2022-88856","DOIUrl":null,"url":null,"abstract":"\n Quantum statistical mechanics offers an increasingly relevant theory for a wide variety of probabilistic systems including thermodynamics, particle dynamics, and robotics. Quantum dynamical systems can be described by linear time invariant systems and so there is a need to build out traditional control theory for quantum statistical mechanics. The probability information in a quantum dynamical system evolves according to the quantum master equation, whose state is a matrix instead of a column vector. Accordingly, the traditional notion of a full rank observability matrix does not apply. In this work, we develop a proof of observability for quantum dynamical systems including a rank test and algorithmic considerations. A qubit example is provided for situations where the dynamical system is both observable and unobservable.","PeriodicalId":302047,"journal":{"name":"Volume 5: Dynamics, Vibration, and Control","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Observability of Quantum Dynamical Systems\",\"authors\":\"Tristan D. Griffith, Vinod P. Gehlot, M. Balas\",\"doi\":\"10.1115/imece2022-88856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Quantum statistical mechanics offers an increasingly relevant theory for a wide variety of probabilistic systems including thermodynamics, particle dynamics, and robotics. Quantum dynamical systems can be described by linear time invariant systems and so there is a need to build out traditional control theory for quantum statistical mechanics. The probability information in a quantum dynamical system evolves according to the quantum master equation, whose state is a matrix instead of a column vector. Accordingly, the traditional notion of a full rank observability matrix does not apply. In this work, we develop a proof of observability for quantum dynamical systems including a rank test and algorithmic considerations. A qubit example is provided for situations where the dynamical system is both observable and unobservable.\",\"PeriodicalId\":302047,\"journal\":{\"name\":\"Volume 5: Dynamics, Vibration, and Control\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Dynamics, Vibration, and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-88856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-88856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子统计力学为包括热力学、粒子动力学和机器人在内的各种概率系统提供了越来越相关的理论。量子动力系统可以用线性时不变系统来描述,因此有必要建立量子统计力学的传统控制理论。量子动力系统中的概率信息按照量子主方程演化,量子主方程的状态是矩阵而不是列向量。因此,传统的全秩可观察性矩阵的概念并不适用。在这项工作中,我们开发了量子动力系统的可观测性证明,包括秩检验和算法考虑。提供了一个量子比特的例子,其中动力系统是可观察的和不可观察的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Observability of Quantum Dynamical Systems
Quantum statistical mechanics offers an increasingly relevant theory for a wide variety of probabilistic systems including thermodynamics, particle dynamics, and robotics. Quantum dynamical systems can be described by linear time invariant systems and so there is a need to build out traditional control theory for quantum statistical mechanics. The probability information in a quantum dynamical system evolves according to the quantum master equation, whose state is a matrix instead of a column vector. Accordingly, the traditional notion of a full rank observability matrix does not apply. In this work, we develop a proof of observability for quantum dynamical systems including a rank test and algorithmic considerations. A qubit example is provided for situations where the dynamical system is both observable and unobservable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信