移动不变支持向量机在自动目标识别系统中的图像分类

Ehimwenma Omoregbee, M. Ndoye, J. Khan
{"title":"移动不变支持向量机在自动目标识别系统中的图像分类","authors":"Ehimwenma Omoregbee, M. Ndoye, J. Khan","doi":"10.1109/ICEET56468.2022.10007129","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new method that combines the concepts of distance classifier correlation filters (DCCF) and support vector machines (SVM) to enable a new shift-invariant classification algorithm. A DCCF-based kernel function is developed to use with the SVM classifier for image classification. We demonstrate that the proposed kernel satisfies Mercer’s condition, and thus a viable SVM kernel. Our proposed algorithm is shift invariant and exhibits high discrimination when tested on moving and stationary target acquisition and recognition (MSTAR) datasets, a standard benchmarking resource for ATR algorithms. Our proposed solution outperformed two state-of-the-art shift-invariant algorithms: Unconstrained maximum average correlation energy(UMACE) and Optimal tradeoff synthetic discriminant function(OTSDF). Furthermore, our results indicate that the proposed algorithm outperforms the SVM-Gaussian when relatively small datasets are available.","PeriodicalId":241355,"journal":{"name":"2022 International Conference on Engineering and Emerging Technologies (ICEET)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shift Invariant Support Vector Machine for Image Classification in Automatic Target Recognition Systems\",\"authors\":\"Ehimwenma Omoregbee, M. Ndoye, J. Khan\",\"doi\":\"10.1109/ICEET56468.2022.10007129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new method that combines the concepts of distance classifier correlation filters (DCCF) and support vector machines (SVM) to enable a new shift-invariant classification algorithm. A DCCF-based kernel function is developed to use with the SVM classifier for image classification. We demonstrate that the proposed kernel satisfies Mercer’s condition, and thus a viable SVM kernel. Our proposed algorithm is shift invariant and exhibits high discrimination when tested on moving and stationary target acquisition and recognition (MSTAR) datasets, a standard benchmarking resource for ATR algorithms. Our proposed solution outperformed two state-of-the-art shift-invariant algorithms: Unconstrained maximum average correlation energy(UMACE) and Optimal tradeoff synthetic discriminant function(OTSDF). Furthermore, our results indicate that the proposed algorithm outperforms the SVM-Gaussian when relatively small datasets are available.\",\"PeriodicalId\":241355,\"journal\":{\"name\":\"2022 International Conference on Engineering and Emerging Technologies (ICEET)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Engineering and Emerging Technologies (ICEET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEET56468.2022.10007129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Engineering and Emerging Technologies (ICEET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEET56468.2022.10007129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种结合距离分类器相关滤波器(DCCF)和支持向量机(SVM)的新方法,实现了一种新的移位不变分类算法。开发了一种基于dccf的核函数与SVM分类器一起用于图像分类。我们证明了所提出的核满足Mercer条件,因此是一个可行的SVM核。我们提出的算法是移位不变性的,并且在运动和静止目标获取和识别(MSTAR)数据集(ATR算法的标准基准资源)上进行测试时显示出很高的辨别能力。我们提出的解决方案优于两种最先进的移位不变算法:无约束最大平均相关能(UMACE)和最优权衡综合判别函数(OTSDF)。此外,我们的结果表明,当可用的数据集相对较小时,所提出的算法优于svm -高斯算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shift Invariant Support Vector Machine for Image Classification in Automatic Target Recognition Systems
In this paper, we present a new method that combines the concepts of distance classifier correlation filters (DCCF) and support vector machines (SVM) to enable a new shift-invariant classification algorithm. A DCCF-based kernel function is developed to use with the SVM classifier for image classification. We demonstrate that the proposed kernel satisfies Mercer’s condition, and thus a viable SVM kernel. Our proposed algorithm is shift invariant and exhibits high discrimination when tested on moving and stationary target acquisition and recognition (MSTAR) datasets, a standard benchmarking resource for ATR algorithms. Our proposed solution outperformed two state-of-the-art shift-invariant algorithms: Unconstrained maximum average correlation energy(UMACE) and Optimal tradeoff synthetic discriminant function(OTSDF). Furthermore, our results indicate that the proposed algorithm outperforms the SVM-Gaussian when relatively small datasets are available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信