S. Mori, F. S. Marzano, Fabrizio Frezza, G. Beleffi, V. Carrozzo, A. Busacca, A. Andò
{"title":"水流星对自由空间近红外链路散射效应的模型分析","authors":"S. Mori, F. S. Marzano, Fabrizio Frezza, G. Beleffi, V. Carrozzo, A. Busacca, A. Andò","doi":"10.1109/IWOW.2012.6349692","DOIUrl":null,"url":null,"abstract":"A promising technology for peer-to-peer connections and urban area networks is represented by wireless communications through free space using optical carrier (Free Space Optics, FSO). This technology ensures high data rates, with relatively low error rates, low power consumption and inherent security. Nevertheless FSO links are quite sensitive to atmospheric condition. Fog droplets, but also raindrops and snowflakes, may introduce severe path attenuation which drastically reduces the channel availability. A parametric model to simulate droplets scattering effects over the FSO link in terms of extinction coefficient, albedo factor and asymmetry coefficient as function of the particle water content will be presented. Both single and multiple scattering effects will be shown.","PeriodicalId":244805,"journal":{"name":"2012 International Workshop on Optical Wireless Communications (IWOW)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Model analysis of hydrometeor scattering effects on free space near-infrared links\",\"authors\":\"S. Mori, F. S. Marzano, Fabrizio Frezza, G. Beleffi, V. Carrozzo, A. Busacca, A. Andò\",\"doi\":\"10.1109/IWOW.2012.6349692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A promising technology for peer-to-peer connections and urban area networks is represented by wireless communications through free space using optical carrier (Free Space Optics, FSO). This technology ensures high data rates, with relatively low error rates, low power consumption and inherent security. Nevertheless FSO links are quite sensitive to atmospheric condition. Fog droplets, but also raindrops and snowflakes, may introduce severe path attenuation which drastically reduces the channel availability. A parametric model to simulate droplets scattering effects over the FSO link in terms of extinction coefficient, albedo factor and asymmetry coefficient as function of the particle water content will be presented. Both single and multiple scattering effects will be shown.\",\"PeriodicalId\":244805,\"journal\":{\"name\":\"2012 International Workshop on Optical Wireless Communications (IWOW)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Workshop on Optical Wireless Communications (IWOW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWOW.2012.6349692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Workshop on Optical Wireless Communications (IWOW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOW.2012.6349692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model analysis of hydrometeor scattering effects on free space near-infrared links
A promising technology for peer-to-peer connections and urban area networks is represented by wireless communications through free space using optical carrier (Free Space Optics, FSO). This technology ensures high data rates, with relatively low error rates, low power consumption and inherent security. Nevertheless FSO links are quite sensitive to atmospheric condition. Fog droplets, but also raindrops and snowflakes, may introduce severe path attenuation which drastically reduces the channel availability. A parametric model to simulate droplets scattering effects over the FSO link in terms of extinction coefficient, albedo factor and asymmetry coefficient as function of the particle water content will be presented. Both single and multiple scattering effects will be shown.