基于HMM-BPNN模型的动态手势识别

Zhou Lu, Li-Shuang Zhang, Sun Lei, Xue-Bo Zhang
{"title":"基于HMM-BPNN模型的动态手势识别","authors":"Zhou Lu, Li-Shuang Zhang, Sun Lei, Xue-Bo Zhang","doi":"10.1109/RCAR.2016.7784066","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method, combining Hidden Markov Model and BP Neutral Network (called HMM-BPNN Model), to solve the problem of dynamic hand gesture recognition. Specifically, first extract the information of hand gesture feature from 3D depth image using the finger tracking module of Intel perceptual equipment; second, the resulting information of hand gesture feature is modeled with the method of Hidden Markov Model (HMM); third, BP Neutral Network (BPNN), as the classifier, recognizes the inputting dynamic hand gesture. Finally, the results of simulation and experiment verify the feasibility of the proposed method in this paper.","PeriodicalId":402174,"journal":{"name":"2016 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic hand gesture recognition using HMM-BPNN model\",\"authors\":\"Zhou Lu, Li-Shuang Zhang, Sun Lei, Xue-Bo Zhang\",\"doi\":\"10.1109/RCAR.2016.7784066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new method, combining Hidden Markov Model and BP Neutral Network (called HMM-BPNN Model), to solve the problem of dynamic hand gesture recognition. Specifically, first extract the information of hand gesture feature from 3D depth image using the finger tracking module of Intel perceptual equipment; second, the resulting information of hand gesture feature is modeled with the method of Hidden Markov Model (HMM); third, BP Neutral Network (BPNN), as the classifier, recognizes the inputting dynamic hand gesture. Finally, the results of simulation and experiment verify the feasibility of the proposed method in this paper.\",\"PeriodicalId\":402174,\"journal\":{\"name\":\"2016 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCAR.2016.7784066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR.2016.7784066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种将隐马尔可夫模型与BP神经网络相结合的方法(HMM-BPNN模型)来解决动态手势识别问题。具体而言,首先利用英特尔感知设备的手指跟踪模块从三维深度图像中提取手势特征信息;其次,利用隐马尔可夫模型(HMM)方法对手势特征的结果信息进行建模;第三,BP神经网络(BP neural Network, BPNN)作为分类器对输入的动态手势进行识别。最后,仿真和实验结果验证了本文所提方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic hand gesture recognition using HMM-BPNN model
This paper proposes a new method, combining Hidden Markov Model and BP Neutral Network (called HMM-BPNN Model), to solve the problem of dynamic hand gesture recognition. Specifically, first extract the information of hand gesture feature from 3D depth image using the finger tracking module of Intel perceptual equipment; second, the resulting information of hand gesture feature is modeled with the method of Hidden Markov Model (HMM); third, BP Neutral Network (BPNN), as the classifier, recognizes the inputting dynamic hand gesture. Finally, the results of simulation and experiment verify the feasibility of the proposed method in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信