{"title":"一种计算多序列双向最小多项式的算法","authors":"Li-Ping Wang","doi":"10.1109/ISIT.2009.5205701","DOIUrl":null,"url":null,"abstract":"In this paper we give an algorithm for computing a bidirectional minimal polynomial (a characteristic polynomial with not only minimal degree but also a nonzero constant term) of a given finite-length multisequence by modifying a lattice-based linear feedback shift register synthesis algorithm for multisequences. We also describe the set of all such polynomials for a multisequence.","PeriodicalId":412925,"journal":{"name":"2009 IEEE International Symposium on Information Theory","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An algorithm for computing bidirectional minimal polynomials for multisequences\",\"authors\":\"Li-Ping Wang\",\"doi\":\"10.1109/ISIT.2009.5205701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give an algorithm for computing a bidirectional minimal polynomial (a characteristic polynomial with not only minimal degree but also a nonzero constant term) of a given finite-length multisequence by modifying a lattice-based linear feedback shift register synthesis algorithm for multisequences. We also describe the set of all such polynomials for a multisequence.\",\"PeriodicalId\":412925,\"journal\":{\"name\":\"2009 IEEE International Symposium on Information Theory\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2009.5205701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An algorithm for computing bidirectional minimal polynomials for multisequences
In this paper we give an algorithm for computing a bidirectional minimal polynomial (a characteristic polynomial with not only minimal degree but also a nonzero constant term) of a given finite-length multisequence by modifying a lattice-based linear feedback shift register synthesis algorithm for multisequences. We also describe the set of all such polynomials for a multisequence.