用自适应有限元法求解静态电磁问题

N. Amjady
{"title":"用自适应有限元法求解静态电磁问题","authors":"N. Amjady","doi":"10.1109/CCECE.1998.685621","DOIUrl":null,"url":null,"abstract":"An adaptive version of the finite element method, FEM, is presented which can discretize the solution region according to calculation errors. The method is applied for the solution of Laplace and Poisson equations arising in static electromagnetic problems. It is shown that the efficiency of the proposed adaptive method is much better than the normal application of the FEM and some other methods.","PeriodicalId":177613,"journal":{"name":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","volume":"615 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solution of static electromagnetic problems by an adaptive finite element method\",\"authors\":\"N. Amjady\",\"doi\":\"10.1109/CCECE.1998.685621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive version of the finite element method, FEM, is presented which can discretize the solution region according to calculation errors. The method is applied for the solution of Laplace and Poisson equations arising in static electromagnetic problems. It is shown that the efficiency of the proposed adaptive method is much better than the normal application of the FEM and some other methods.\",\"PeriodicalId\":177613,\"journal\":{\"name\":\"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)\",\"volume\":\"615 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.1998.685621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1998.685621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种自适应有限元法,可以根据计算误差对解域进行离散化。该方法用于求解静态电磁问题中的拉普拉斯方程和泊松方程。计算结果表明,所提出的自适应方法的效率远远优于一般的有限元法和其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of static electromagnetic problems by an adaptive finite element method
An adaptive version of the finite element method, FEM, is presented which can discretize the solution region according to calculation errors. The method is applied for the solution of Laplace and Poisson equations arising in static electromagnetic problems. It is shown that the efficiency of the proposed adaptive method is much better than the normal application of the FEM and some other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信