一类可分解有限几何LDPC码的多级编码

Ya Liu, Hui-fang Chen, Lei Xie, Ming Gao
{"title":"一类可分解有限几何LDPC码的多级编码","authors":"Ya Liu, Hui-fang Chen, Lei Xie, Ming Gao","doi":"10.1109/ICCSC.2008.16","DOIUrl":null,"url":null,"abstract":"This paper proposes a class of decomposable LDPC codes based on finite geometry EG(m, ps) over bandlimited AWGN channel. These LDPC codes defined as the origin LDPC codes are decomposed into a few small LDPC codes as component codes in multilevel coding. It is shown that the origin LDPC codes demand generic M-ary Min-Sum algorithm while the component codes only require a few binary Min-Sum algorithm implementations in multi-stages decoding. The method proposed simplifies the decoding complexity.","PeriodicalId":137660,"journal":{"name":"2008 4th IEEE International Conference on Circuits and Systems for Communications","volume":"275 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilevel Coding with a Class of Decomposable Finite-Geometry LDPC Codes\",\"authors\":\"Ya Liu, Hui-fang Chen, Lei Xie, Ming Gao\",\"doi\":\"10.1109/ICCSC.2008.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a class of decomposable LDPC codes based on finite geometry EG(m, ps) over bandlimited AWGN channel. These LDPC codes defined as the origin LDPC codes are decomposed into a few small LDPC codes as component codes in multilevel coding. It is shown that the origin LDPC codes demand generic M-ary Min-Sum algorithm while the component codes only require a few binary Min-Sum algorithm implementations in multi-stages decoding. The method proposed simplifies the decoding complexity.\",\"PeriodicalId\":137660,\"journal\":{\"name\":\"2008 4th IEEE International Conference on Circuits and Systems for Communications\",\"volume\":\"275 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 4th IEEE International Conference on Circuits and Systems for Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSC.2008.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 4th IEEE International Conference on Circuits and Systems for Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSC.2008.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在有限带宽AWGN信道上,提出了一类基于有限几何EG(m, ps)的可分解LDPC码。在多级编码中,这些被定义为原始LDPC码的LDPC码被分解成几个小的LDPC码作为分量码。结果表明,原始LDPC码在多段译码中需要通用的M-ary最小和算法,而组件码只需要少量的二进制最小和算法实现。该方法简化了译码复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilevel Coding with a Class of Decomposable Finite-Geometry LDPC Codes
This paper proposes a class of decomposable LDPC codes based on finite geometry EG(m, ps) over bandlimited AWGN channel. These LDPC codes defined as the origin LDPC codes are decomposed into a few small LDPC codes as component codes in multilevel coding. It is shown that the origin LDPC codes demand generic M-ary Min-Sum algorithm while the component codes only require a few binary Min-Sum algorithm implementations in multi-stages decoding. The method proposed simplifies the decoding complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信