Shrikanth Ganapathy, R. Canal, D. Alexandrescu, Enrico Costenaro, Antonio González, A. Rubio
{"title":"一种具有增强软误差容忍度的新型变容4T-DRAM单元","authors":"Shrikanth Ganapathy, R. Canal, D. Alexandrescu, Enrico Costenaro, Antonio González, A. Rubio","doi":"10.1109/ICCD.2012.6378681","DOIUrl":null,"url":null,"abstract":"In view of device scaling issues, embedded DRAM (eDRAM) technology is being considered as a strong alternative to conventional SRAM for use in on-chip memories. Memory cells designed using eDRAM technology in addition to being logic-compatible, are variation tolerant and immune to noise present at low supply voltages. However, two major causes of concern are the data retention capability which is worsened by parameter variations leading to frequent data refreshes (resulting in large dynamic power overhead) and the transient reduction of stored charge increasing soft-error (SE) susceptibility. In this paper, we present a novel variation-tolerant 4T-DRAM cell whose power consumption is 20.4% lower when compared to a similar sized eDRAM cell. The retention time on-average is improved by 2.04X while incurring a delay overhead of 3% on the read-access time. Most importantly, using a soft-error (SE) rate analysis tool, we have confirmed that the cell sensitivity to SEs is reduced by 56% on-average in a natural working environment.","PeriodicalId":313428,"journal":{"name":"2012 IEEE 30th International Conference on Computer Design (ICCD)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A novel variation-tolerant 4T-DRAM cell with enhanced soft-error tolerance\",\"authors\":\"Shrikanth Ganapathy, R. Canal, D. Alexandrescu, Enrico Costenaro, Antonio González, A. Rubio\",\"doi\":\"10.1109/ICCD.2012.6378681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of device scaling issues, embedded DRAM (eDRAM) technology is being considered as a strong alternative to conventional SRAM for use in on-chip memories. Memory cells designed using eDRAM technology in addition to being logic-compatible, are variation tolerant and immune to noise present at low supply voltages. However, two major causes of concern are the data retention capability which is worsened by parameter variations leading to frequent data refreshes (resulting in large dynamic power overhead) and the transient reduction of stored charge increasing soft-error (SE) susceptibility. In this paper, we present a novel variation-tolerant 4T-DRAM cell whose power consumption is 20.4% lower when compared to a similar sized eDRAM cell. The retention time on-average is improved by 2.04X while incurring a delay overhead of 3% on the read-access time. Most importantly, using a soft-error (SE) rate analysis tool, we have confirmed that the cell sensitivity to SEs is reduced by 56% on-average in a natural working environment.\",\"PeriodicalId\":313428,\"journal\":{\"name\":\"2012 IEEE 30th International Conference on Computer Design (ICCD)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 30th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2012.6378681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 30th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2012.6378681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel variation-tolerant 4T-DRAM cell with enhanced soft-error tolerance
In view of device scaling issues, embedded DRAM (eDRAM) technology is being considered as a strong alternative to conventional SRAM for use in on-chip memories. Memory cells designed using eDRAM technology in addition to being logic-compatible, are variation tolerant and immune to noise present at low supply voltages. However, two major causes of concern are the data retention capability which is worsened by parameter variations leading to frequent data refreshes (resulting in large dynamic power overhead) and the transient reduction of stored charge increasing soft-error (SE) susceptibility. In this paper, we present a novel variation-tolerant 4T-DRAM cell whose power consumption is 20.4% lower when compared to a similar sized eDRAM cell. The retention time on-average is improved by 2.04X while incurring a delay overhead of 3% on the read-access time. Most importantly, using a soft-error (SE) rate analysis tool, we have confirmed that the cell sensitivity to SEs is reduced by 56% on-average in a natural working environment.