{"title":"硅基热致动MEMS粘度传感器的分析与稳定性","authors":"I. Puchades, L. Fuller, S. Lyshevski","doi":"10.1109/ELNANO.2017.7939722","DOIUrl":null,"url":null,"abstract":"The proposed MEMS-technology viscosity sensor solves two major drawbacks associated with current state of the art MEMS viscosity sensors, such as: (1) Functional complexity and integration of external components for actuation and subsequent data acquisition; (2) Fabrication incompatibilities with CMOS processes. The proposed solution is based on thermally induced actuation, subsequent vibrations of a silicon plate, and, plate damping in the surrounding fluid. This vibration viscometer device utilizes thermal actuation through an in-situ resistive heater and piezoresistive sensing of vibration. The studied MEMS sensor structures and components utilize CMOS compatible materials and fabrication processes. This leads to affordable, high-yield and reliable systems. A technology-centric solution is verified, tested and characterized to demonstrate that sensor is capable of measuring viscosities in the range from 10 to 500 cP with less than 5% error. Long-term stability testing shows a frequency variation of less than 5% for more than 1×106 actuation cycles.","PeriodicalId":333746,"journal":{"name":"2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis and stability of a silicon-based thermally actuated MEMS viscosity sensor\",\"authors\":\"I. Puchades, L. Fuller, S. Lyshevski\",\"doi\":\"10.1109/ELNANO.2017.7939722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed MEMS-technology viscosity sensor solves two major drawbacks associated with current state of the art MEMS viscosity sensors, such as: (1) Functional complexity and integration of external components for actuation and subsequent data acquisition; (2) Fabrication incompatibilities with CMOS processes. The proposed solution is based on thermally induced actuation, subsequent vibrations of a silicon plate, and, plate damping in the surrounding fluid. This vibration viscometer device utilizes thermal actuation through an in-situ resistive heater and piezoresistive sensing of vibration. The studied MEMS sensor structures and components utilize CMOS compatible materials and fabrication processes. This leads to affordable, high-yield and reliable systems. A technology-centric solution is verified, tested and characterized to demonstrate that sensor is capable of measuring viscosities in the range from 10 to 500 cP with less than 5% error. Long-term stability testing shows a frequency variation of less than 5% for more than 1×106 actuation cycles.\",\"PeriodicalId\":333746,\"journal\":{\"name\":\"2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELNANO.2017.7939722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELNANO.2017.7939722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis and stability of a silicon-based thermally actuated MEMS viscosity sensor
The proposed MEMS-technology viscosity sensor solves two major drawbacks associated with current state of the art MEMS viscosity sensors, such as: (1) Functional complexity and integration of external components for actuation and subsequent data acquisition; (2) Fabrication incompatibilities with CMOS processes. The proposed solution is based on thermally induced actuation, subsequent vibrations of a silicon plate, and, plate damping in the surrounding fluid. This vibration viscometer device utilizes thermal actuation through an in-situ resistive heater and piezoresistive sensing of vibration. The studied MEMS sensor structures and components utilize CMOS compatible materials and fabrication processes. This leads to affordable, high-yield and reliable systems. A technology-centric solution is verified, tested and characterized to demonstrate that sensor is capable of measuring viscosities in the range from 10 to 500 cP with less than 5% error. Long-term stability testing shows a frequency variation of less than 5% for more than 1×106 actuation cycles.