无三角函数矩阵变换器的调制策略与控制范围函数

J. Igney, I. Hahn
{"title":"无三角函数矩阵变换器的调制策略与控制范围函数","authors":"J. Igney, I. Hahn","doi":"10.1109/speedam53979.2022.9842119","DOIUrl":null,"url":null,"abstract":"The theory presented in this paper preserves the inherent symmetry of the matrix converter. In this way, analytically simple and computationally inexpensive formulas are derived to describe the control range and modulation of the classic 3$\\times$3 matrix converter. No trigonometric formulas need to be evaluated to verify the control range and to calculate the modulation. This is beneficial for the realization of efficient real-time program code.","PeriodicalId":365235,"journal":{"name":"2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modulation Strategy and Control Range Function for Matrix Converters Without Trigonometric Functions\",\"authors\":\"J. Igney, I. Hahn\",\"doi\":\"10.1109/speedam53979.2022.9842119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theory presented in this paper preserves the inherent symmetry of the matrix converter. In this way, analytically simple and computationally inexpensive formulas are derived to describe the control range and modulation of the classic 3$\\\\times$3 matrix converter. No trigonometric formulas need to be evaluated to verify the control range and to calculate the modulation. This is beneficial for the realization of efficient real-time program code.\",\"PeriodicalId\":365235,\"journal\":{\"name\":\"2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/speedam53979.2022.9842119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/speedam53979.2022.9842119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出的理论保留了矩阵变换器固有的对称性。通过这种方法,推导出了解析简单、计算成本低廉的公式来描述经典的3$\ × $3矩阵变换器的控制范围和调制。不需要评估三角公式来验证控制范围和计算调制。这有利于实现高效的实时程序代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulation Strategy and Control Range Function for Matrix Converters Without Trigonometric Functions
The theory presented in this paper preserves the inherent symmetry of the matrix converter. In this way, analytically simple and computationally inexpensive formulas are derived to describe the control range and modulation of the classic 3$\times$3 matrix converter. No trigonometric formulas need to be evaluated to verify the control range and to calculate the modulation. This is beneficial for the realization of efficient real-time program code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信