2型调制脉宽调制反馈系统的稳定性分析:临界情况

Ling Hou
{"title":"2型调制脉宽调制反馈系统的稳定性分析:临界情况","authors":"Ling Hou","doi":"10.1109/ISCAS.2005.1465305","DOIUrl":null,"url":null,"abstract":"In this paper, the author presents new Lyapunov and Lagrange stability results for the critical case of pulse-width-modulated (PWM) feedback systems with type 2 modulation. The linear plant considered herein is assumed to be critically stable, i.e., the plant has one and only one pole at the origin and the rest of the poles are in the left half of the complex plane. An algorithm is incorporated to allow easy calculation of the stability bound. The applicability of the present results is demonstrated by means of two specific examples.","PeriodicalId":191200,"journal":{"name":"2005 IEEE International Symposium on Circuits and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Stability analysis of pulse-width-modulated feedback systems with type 2 modulation: the critical case\",\"authors\":\"Ling Hou\",\"doi\":\"10.1109/ISCAS.2005.1465305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the author presents new Lyapunov and Lagrange stability results for the critical case of pulse-width-modulated (PWM) feedback systems with type 2 modulation. The linear plant considered herein is assumed to be critically stable, i.e., the plant has one and only one pole at the origin and the rest of the poles are in the left half of the complex plane. An algorithm is incorporated to allow easy calculation of the stability bound. The applicability of the present results is demonstrated by means of two specific examples.\",\"PeriodicalId\":191200,\"journal\":{\"name\":\"2005 IEEE International Symposium on Circuits and Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2005.1465305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2005.1465305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文给出了2型调制脉宽调制(PWM)反馈系统临界情况下新的李雅普诺夫稳定性和拉格朗日稳定性结果。本文所考虑的线性对象假定是临界稳定的,即该对象在原点有且只有一个极点,其余极点都在复平面的左半部分。结合了一种算法,便于计算稳定性界。通过两个具体算例说明了所得结果的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis of pulse-width-modulated feedback systems with type 2 modulation: the critical case
In this paper, the author presents new Lyapunov and Lagrange stability results for the critical case of pulse-width-modulated (PWM) feedback systems with type 2 modulation. The linear plant considered herein is assumed to be critically stable, i.e., the plant has one and only one pole at the origin and the rest of the poles are in the left half of the complex plane. An algorithm is incorporated to allow easy calculation of the stability bound. The applicability of the present results is demonstrated by means of two specific examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信