利用基于学习的动作调控器提高自动驾驶汽车的交通安全性

Kyoungseok Han, Nan Li, Eric Tseng, Dimitar Filev, Ilya Kolmanovsky, Anouck Girard
{"title":"利用基于学习的动作调控器提高自动驾驶汽车的交通安全性","authors":"Kyoungseok Han,&nbsp;Nan Li,&nbsp;Eric Tseng,&nbsp;Dimitar Filev,&nbsp;Ilya Kolmanovsky,&nbsp;Anouck Girard","doi":"10.1002/adc2.101","DOIUrl":null,"url":null,"abstract":"<p>The <i>Action Governor (AG)</i> is a supervisory scheme augmenting a nominal control system in order to enhance the system's safety and performance. It acts as an action filter, monitoring the action commands generated by the nominal control policy and adjusting the ones that might lead to undesirable system behavior. In this article, we present an approach based on learning to developing an AG for autonomous vehicle (AV) decision policies to improve their safety for operating in mixed-autonomy traffic (i.e., traffic involving both AVs and human-operated vehicles (HVs)). To achieve this, we demonstrate that it is possible to train the AG in a traffic simulator that is capable of representing in-traffic interactions among AVs and HVs. We illustrate the effectiveness of this learning-based AG approach to improving AV in-traffic safety through simulation case studies.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.101","citationCount":"2","resultStr":"{\"title\":\"Improving autonomous vehicle in-traffic safety using learning-based action governor\",\"authors\":\"Kyoungseok Han,&nbsp;Nan Li,&nbsp;Eric Tseng,&nbsp;Dimitar Filev,&nbsp;Ilya Kolmanovsky,&nbsp;Anouck Girard\",\"doi\":\"10.1002/adc2.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <i>Action Governor (AG)</i> is a supervisory scheme augmenting a nominal control system in order to enhance the system's safety and performance. It acts as an action filter, monitoring the action commands generated by the nominal control policy and adjusting the ones that might lead to undesirable system behavior. In this article, we present an approach based on learning to developing an AG for autonomous vehicle (AV) decision policies to improve their safety for operating in mixed-autonomy traffic (i.e., traffic involving both AVs and human-operated vehicles (HVs)). To achieve this, we demonstrate that it is possible to train the AG in a traffic simulator that is capable of representing in-traffic interactions among AVs and HVs. We illustrate the effectiveness of this learning-based AG approach to improving AV in-traffic safety through simulation case studies.</p>\",\"PeriodicalId\":100030,\"journal\":{\"name\":\"Advanced Control for Applications\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.101\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Control for Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adc2.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Control for Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adc2.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

行动调控是一项监管计划,旨在加强名义上的控制系统,以提高系统的安全性和性能。它充当动作过滤器,监视名义控制策略生成的动作命令,并调整可能导致不良系统行为的命令。在本文中,我们提出了一种基于学习的方法来开发自动驾驶汽车(AV)决策策略,以提高其在混合自主交通(即涉及自动驾驶汽车和人类驾驶车辆(HVs)的交通)中的安全性。为了实现这一目标,我们证明了在交通模拟器中训练自动驾驶汽车是可能的,该模拟器能够表示自动驾驶汽车和hv之间的交通交互。我们通过仿真案例研究说明了这种基于学习的自动驾驶方法在提高自动驾驶车辆交通安全方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving autonomous vehicle in-traffic safety using learning-based action governor

The Action Governor (AG) is a supervisory scheme augmenting a nominal control system in order to enhance the system's safety and performance. It acts as an action filter, monitoring the action commands generated by the nominal control policy and adjusting the ones that might lead to undesirable system behavior. In this article, we present an approach based on learning to developing an AG for autonomous vehicle (AV) decision policies to improve their safety for operating in mixed-autonomy traffic (i.e., traffic involving both AVs and human-operated vehicles (HVs)). To achieve this, we demonstrate that it is possible to train the AG in a traffic simulator that is capable of representing in-traffic interactions among AVs and HVs. We illustrate the effectiveness of this learning-based AG approach to improving AV in-traffic safety through simulation case studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信