Katheryn Broman, Abigail U. Davis, J. May, Han-A Park
{"title":"生活方式因素、线粒体动力学和神经保护","authors":"Katheryn Broman, Abigail U. Davis, J. May, Han-A Park","doi":"10.5772/intechopen.89416","DOIUrl":null,"url":null,"abstract":"The brain requires vast amounts of energy to carry out neurotransmission; indeed, it is responsible for approximately one-fifth of the body’s energy consumption. Therefore, in order to understand functions of brain cells under both normal and pathological conditions, it is critical to elucidate dynamics of intracellular energy. The mitochondrion is the key intercellular organelle that controls neuronal energy and survival. Numerous studies have reported a correlation between altered mitochondrial function and brain-associated diseases; thus mitochondria may serve as a promising target for treating these conditions. In this chapter, we will discuss the mechanisms of mitochondrial production, movement, and degradation in order to understand accessibility of energy during physiological and pathological conditions of the brain. While research targeting molecular dynamics is promising, translation into clinical relevance based on bench research is challenging. For these reasons, we will also summarize lifestyle factors, including interventions and chronic comorbidities that disrupt mitochondrial dynamics. By determining lifestyle factors that are readily accessible, we can propose a new viewpoint for a synergistic and translational approach for neuroprotection.","PeriodicalId":165931,"journal":{"name":"Neuroprotection - New Approaches and Prospects","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lifestyle Factors, Mitochondrial Dynamics, and Neuroprotection\",\"authors\":\"Katheryn Broman, Abigail U. Davis, J. May, Han-A Park\",\"doi\":\"10.5772/intechopen.89416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The brain requires vast amounts of energy to carry out neurotransmission; indeed, it is responsible for approximately one-fifth of the body’s energy consumption. Therefore, in order to understand functions of brain cells under both normal and pathological conditions, it is critical to elucidate dynamics of intracellular energy. The mitochondrion is the key intercellular organelle that controls neuronal energy and survival. Numerous studies have reported a correlation between altered mitochondrial function and brain-associated diseases; thus mitochondria may serve as a promising target for treating these conditions. In this chapter, we will discuss the mechanisms of mitochondrial production, movement, and degradation in order to understand accessibility of energy during physiological and pathological conditions of the brain. While research targeting molecular dynamics is promising, translation into clinical relevance based on bench research is challenging. For these reasons, we will also summarize lifestyle factors, including interventions and chronic comorbidities that disrupt mitochondrial dynamics. By determining lifestyle factors that are readily accessible, we can propose a new viewpoint for a synergistic and translational approach for neuroprotection.\",\"PeriodicalId\":165931,\"journal\":{\"name\":\"Neuroprotection - New Approaches and Prospects\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroprotection - New Approaches and Prospects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.89416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroprotection - New Approaches and Prospects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.89416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lifestyle Factors, Mitochondrial Dynamics, and Neuroprotection
The brain requires vast amounts of energy to carry out neurotransmission; indeed, it is responsible for approximately one-fifth of the body’s energy consumption. Therefore, in order to understand functions of brain cells under both normal and pathological conditions, it is critical to elucidate dynamics of intracellular energy. The mitochondrion is the key intercellular organelle that controls neuronal energy and survival. Numerous studies have reported a correlation between altered mitochondrial function and brain-associated diseases; thus mitochondria may serve as a promising target for treating these conditions. In this chapter, we will discuss the mechanisms of mitochondrial production, movement, and degradation in order to understand accessibility of energy during physiological and pathological conditions of the brain. While research targeting molecular dynamics is promising, translation into clinical relevance based on bench research is challenging. For these reasons, we will also summarize lifestyle factors, including interventions and chronic comorbidities that disrupt mitochondrial dynamics. By determining lifestyle factors that are readily accessible, we can propose a new viewpoint for a synergistic and translational approach for neuroprotection.