V. Chandra, S. Mitra, Chen-Yong Cher, S. M. Müller
{"title":"现实世界中的跨层弹性","authors":"V. Chandra, S. Mitra, Chen-Yong Cher, S. M. Müller","doi":"10.7873/DATE.2014.180","DOIUrl":null,"url":null,"abstract":"Resilience at different design hierarchies will be needed in Complex SoCs to handle failures due to variability, reliability and design errors (logical or electrical). The main reasons for the marginal behavior are sheer design complexity, uncertainties in manufacturing processes, temporal variability and operating conditions. In this session, we will cover the basics of cross layer resiliency and explore the reliability challenges in both embedded processors as well as large scale computing resources.","PeriodicalId":205976,"journal":{"name":"Design, Automation and Test in Europe","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross layer resiliency in real world\",\"authors\":\"V. Chandra, S. Mitra, Chen-Yong Cher, S. M. Müller\",\"doi\":\"10.7873/DATE.2014.180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resilience at different design hierarchies will be needed in Complex SoCs to handle failures due to variability, reliability and design errors (logical or electrical). The main reasons for the marginal behavior are sheer design complexity, uncertainties in manufacturing processes, temporal variability and operating conditions. In this session, we will cover the basics of cross layer resiliency and explore the reliability challenges in both embedded processors as well as large scale computing resources.\",\"PeriodicalId\":205976,\"journal\":{\"name\":\"Design, Automation and Test in Europe\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design, Automation and Test in Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2014.180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design, Automation and Test in Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2014.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resilience at different design hierarchies will be needed in Complex SoCs to handle failures due to variability, reliability and design errors (logical or electrical). The main reasons for the marginal behavior are sheer design complexity, uncertainties in manufacturing processes, temporal variability and operating conditions. In this session, we will cover the basics of cross layer resiliency and explore the reliability challenges in both embedded processors as well as large scale computing resources.