{"title":"射频硅技术的ic兼容两级体微加工","authors":"N. Pham, P. Sarro, K. Ng, J. Burghartz","doi":"10.1109/ESSDERC.2000.194750","DOIUrl":null,"url":null,"abstract":"This paper presents a novel two-level silicon bulk micromachining for integration of RF (radio frequency) devices. The RF devices are fabricated at the frontside of Si (100) wafers using conventional IC technology. A post-processing module is applied from the wafer backside. This module provides a blanket ground plane at an optimum position beneath the wafer surface, a front-side contact from the wafer surface to that ground plane and trenches to suppress cross talk through the conductive silicon. Moreover, due to the front-side RF ground contact, compatibility to conventional packaging is maintained. The feasibility of the new postprocess module is demonstrated through the fabrication of microstrip transmission lines and conductor-backed spiral inductors.","PeriodicalId":354721,"journal":{"name":"30th European Solid-State Device Research Conference","volume":"273 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"IC-Compatible Two-level Bulk Micromachining for RF Silicon Technology\",\"authors\":\"N. Pham, P. Sarro, K. Ng, J. Burghartz\",\"doi\":\"10.1109/ESSDERC.2000.194750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel two-level silicon bulk micromachining for integration of RF (radio frequency) devices. The RF devices are fabricated at the frontside of Si (100) wafers using conventional IC technology. A post-processing module is applied from the wafer backside. This module provides a blanket ground plane at an optimum position beneath the wafer surface, a front-side contact from the wafer surface to that ground plane and trenches to suppress cross talk through the conductive silicon. Moreover, due to the front-side RF ground contact, compatibility to conventional packaging is maintained. The feasibility of the new postprocess module is demonstrated through the fabrication of microstrip transmission lines and conductor-backed spiral inductors.\",\"PeriodicalId\":354721,\"journal\":{\"name\":\"30th European Solid-State Device Research Conference\",\"volume\":\"273 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"30th European Solid-State Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2000.194750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"30th European Solid-State Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2000.194750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
IC-Compatible Two-level Bulk Micromachining for RF Silicon Technology
This paper presents a novel two-level silicon bulk micromachining for integration of RF (radio frequency) devices. The RF devices are fabricated at the frontside of Si (100) wafers using conventional IC technology. A post-processing module is applied from the wafer backside. This module provides a blanket ground plane at an optimum position beneath the wafer surface, a front-side contact from the wafer surface to that ground plane and trenches to suppress cross talk through the conductive silicon. Moreover, due to the front-side RF ground contact, compatibility to conventional packaging is maintained. The feasibility of the new postprocess module is demonstrated through the fabrication of microstrip transmission lines and conductor-backed spiral inductors.