Brightfield iADC在产量学习和偏移监测中的应用

J. Wittenzellner
{"title":"Brightfield iADC在产量学习和偏移监测中的应用","authors":"J. Wittenzellner","doi":"10.1109/ASMC.2006.1638752","DOIUrl":null,"url":null,"abstract":"Inline ADC provides classification data for all detected wafer defects at run time, without having a negative impact on tool throughput. MTV has successfully used iADC to monitor excursions as well as predict probe fails using inline inspections. The use of iADC has reduced MTV's reliance on SEM review and allowed for more consistent disposition of process issues on the production floor. While iADC is not a standalone solution to yield improvement, it does provide another powerful tool for the defect engineer","PeriodicalId":407645,"journal":{"name":"The 17th Annual SEMI/IEEE ASMC 2006 Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Brightfield iADC Applications for Yield Learning and Excursion Monitoring\",\"authors\":\"J. Wittenzellner\",\"doi\":\"10.1109/ASMC.2006.1638752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inline ADC provides classification data for all detected wafer defects at run time, without having a negative impact on tool throughput. MTV has successfully used iADC to monitor excursions as well as predict probe fails using inline inspections. The use of iADC has reduced MTV's reliance on SEM review and allowed for more consistent disposition of process issues on the production floor. While iADC is not a standalone solution to yield improvement, it does provide another powerful tool for the defect engineer\",\"PeriodicalId\":407645,\"journal\":{\"name\":\"The 17th Annual SEMI/IEEE ASMC 2006 Conference\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 17th Annual SEMI/IEEE ASMC 2006 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC.2006.1638752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 17th Annual SEMI/IEEE ASMC 2006 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2006.1638752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

内联ADC在运行时为所有检测到的晶圆缺陷提供分类数据,而不会对工具吞吐量产生负面影响。MTV已经成功地使用iADC来监测偏差,并通过内联检测来预测探头故障。iADC的使用减少了MTV对SEM审查的依赖,并允许在生产车间更一致地处理过程问题。虽然iADC不是一个独立的良率改进解决方案,但它确实为缺陷工程师提供了另一个强大的工具
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brightfield iADC Applications for Yield Learning and Excursion Monitoring
Inline ADC provides classification data for all detected wafer defects at run time, without having a negative impact on tool throughput. MTV has successfully used iADC to monitor excursions as well as predict probe fails using inline inspections. The use of iADC has reduced MTV's reliance on SEM review and allowed for more consistent disposition of process issues on the production floor. While iADC is not a standalone solution to yield improvement, it does provide another powerful tool for the defect engineer
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信