S. Colangeli, C. Verona, W. Ciccognani, M. Marinelli, G. Rinati, E. Limiti, M. Benetti, D. Cannatà, F. Pietrantonio
{"title":"以V2O5为绝缘体的h端金刚石misfet","authors":"S. Colangeli, C. Verona, W. Ciccognani, M. Marinelli, G. Rinati, E. Limiti, M. Benetti, D. Cannatà, F. Pietrantonio","doi":"10.1109/CSICS.2016.7751046","DOIUrl":null,"url":null,"abstract":"In this work we report on the performance of a MISFET device realized by exploiting the peculiarities of Vanadium Pentoxide (V2O5) as insulating material between the gate metal and the hydrogenated single crystal diamond surface. As opposed to the typical oxide materials (such as Al2O3), the high electron affinity of the proposed oxide allows for the p-type charge transfer doping of the underlying diamond substrate. The comparison of the hydrogenated diamond surface with and without the V2O5 are reported jointly with the electrical performance of the optimized MISFETs and a preliminary small-signal equivalent circuit.","PeriodicalId":183218,"journal":{"name":"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"H-Terminated Diamond MISFETs with V2O5 as Insulator\",\"authors\":\"S. Colangeli, C. Verona, W. Ciccognani, M. Marinelli, G. Rinati, E. Limiti, M. Benetti, D. Cannatà, F. Pietrantonio\",\"doi\":\"10.1109/CSICS.2016.7751046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we report on the performance of a MISFET device realized by exploiting the peculiarities of Vanadium Pentoxide (V2O5) as insulating material between the gate metal and the hydrogenated single crystal diamond surface. As opposed to the typical oxide materials (such as Al2O3), the high electron affinity of the proposed oxide allows for the p-type charge transfer doping of the underlying diamond substrate. The comparison of the hydrogenated diamond surface with and without the V2O5 are reported jointly with the electrical performance of the optimized MISFETs and a preliminary small-signal equivalent circuit.\",\"PeriodicalId\":183218,\"journal\":{\"name\":\"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2016.7751046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2016.7751046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
H-Terminated Diamond MISFETs with V2O5 as Insulator
In this work we report on the performance of a MISFET device realized by exploiting the peculiarities of Vanadium Pentoxide (V2O5) as insulating material between the gate metal and the hydrogenated single crystal diamond surface. As opposed to the typical oxide materials (such as Al2O3), the high electron affinity of the proposed oxide allows for the p-type charge transfer doping of the underlying diamond substrate. The comparison of the hydrogenated diamond surface with and without the V2O5 are reported jointly with the electrical performance of the optimized MISFETs and a preliminary small-signal equivalent circuit.