基于差分进化和学习自动机的自适应模因算法

Abhronil Sengupta, T. Chakraborti, A. Konar, Eunjin Kim, A. Nagar
{"title":"基于差分进化和学习自动机的自适应模因算法","authors":"Abhronil Sengupta, T. Chakraborti, A. Konar, Eunjin Kim, A. Nagar","doi":"10.1109/CEC.2012.6256574","DOIUrl":null,"url":null,"abstract":"In recent years there has been a growing trend in the application of Memetic Algorithms for solving numerical optimization problems. They are population based search heuristics that integrate the benefits of natural and cultural evolution. In this paper, we propose an Adaptive Memetic Algorithm, named LA-DE which employs a competitive variant of Differential Evolution for global search and Learning Automata as the local search technique. During evolution Stochastic Automata Learning helps to balance the exploration and exploitation capabilities of DE resulting in local refinement. The proposed algorithm has been evaluated on a test-suite of 25 benchmark functions provided by CEC 2005 special session on real parameter optimization. Experimental results indicate that LA-DE outperforms several existing DE variants in terms of solution quality.","PeriodicalId":376837,"journal":{"name":"2012 IEEE Congress on Evolutionary Computation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Adaptive Memetic Algorithm using a synergy of Differential Evolution and Learning Automata\",\"authors\":\"Abhronil Sengupta, T. Chakraborti, A. Konar, Eunjin Kim, A. Nagar\",\"doi\":\"10.1109/CEC.2012.6256574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years there has been a growing trend in the application of Memetic Algorithms for solving numerical optimization problems. They are population based search heuristics that integrate the benefits of natural and cultural evolution. In this paper, we propose an Adaptive Memetic Algorithm, named LA-DE which employs a competitive variant of Differential Evolution for global search and Learning Automata as the local search technique. During evolution Stochastic Automata Learning helps to balance the exploration and exploitation capabilities of DE resulting in local refinement. The proposed algorithm has been evaluated on a test-suite of 25 benchmark functions provided by CEC 2005 special session on real parameter optimization. Experimental results indicate that LA-DE outperforms several existing DE variants in terms of solution quality.\",\"PeriodicalId\":376837,\"journal\":{\"name\":\"2012 IEEE Congress on Evolutionary Computation\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2012.6256574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2012.6256574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

近年来,模因算法在求解数值优化问题中的应用呈现出日益增长的趋势。它们是基于人口的搜索启发式,整合了自然和文化进化的好处。本文提出了一种自适应模因算法LA-DE,该算法采用差分进化的竞争变体进行全局搜索和学习自动机作为局部搜索技术。在进化过程中,随机自动机学习有助于平衡DE的探索和利用能力,从而实现局部细化。该算法已在CEC 2005实参数优化专题会议提供的25个基准函数的测试套件上进行了评估。实验结果表明,LA-DE在解质量方面优于几种现有的DE变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Memetic Algorithm using a synergy of Differential Evolution and Learning Automata
In recent years there has been a growing trend in the application of Memetic Algorithms for solving numerical optimization problems. They are population based search heuristics that integrate the benefits of natural and cultural evolution. In this paper, we propose an Adaptive Memetic Algorithm, named LA-DE which employs a competitive variant of Differential Evolution for global search and Learning Automata as the local search technique. During evolution Stochastic Automata Learning helps to balance the exploration and exploitation capabilities of DE resulting in local refinement. The proposed algorithm has been evaluated on a test-suite of 25 benchmark functions provided by CEC 2005 special session on real parameter optimization. Experimental results indicate that LA-DE outperforms several existing DE variants in terms of solution quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信