GF(p)上椭圆曲线处理器的硬件实现

S. Yalcin, L. Batina, B. Preneel, J. Vandewalle
{"title":"GF(p)上椭圆曲线处理器的硬件实现","authors":"S. Yalcin, L. Batina, B. Preneel, J. Vandewalle","doi":"10.1109/ASAP.2003.1212866","DOIUrl":null,"url":null,"abstract":"We describe a hardware implementation of an arithmetic processor which is efficient for bit-lengths suitable for both commonly used types of public key cryptography (PKC), i.e., elliptic curve (EC) and RSA cryptosystems. Montgomery modular multiplication in a systolic array architecture is used for modular multiplication. The processor consists of special operational blocks for Montgomery modular multiplication, modular addition/subtraction, EC point doubling/addition, modular multiplicative inversion, EC point multiplier, projective to affine coordinates conversion and Montgomery to normal representation conversion.","PeriodicalId":261592,"journal":{"name":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":"{\"title\":\"Hardware implementation of an elliptic curve processor over GF(p)\",\"authors\":\"S. Yalcin, L. Batina, B. Preneel, J. Vandewalle\",\"doi\":\"10.1109/ASAP.2003.1212866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a hardware implementation of an arithmetic processor which is efficient for bit-lengths suitable for both commonly used types of public key cryptography (PKC), i.e., elliptic curve (EC) and RSA cryptosystems. Montgomery modular multiplication in a systolic array architecture is used for modular multiplication. The processor consists of special operational blocks for Montgomery modular multiplication, modular addition/subtraction, EC point doubling/addition, modular multiplicative inversion, EC point multiplier, projective to affine coordinates conversion and Montgomery to normal representation conversion.\",\"PeriodicalId\":261592,\"journal\":{\"name\":\"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"134\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2003.1212866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2003.1212866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 134

摘要

我们描述了一个算法处理器的硬件实现,它是有效的位长度适合于常用类型的公钥加密(PKC),即椭圆曲线(EC)和RSA密码系统。在收缩阵列架构中的蒙哥马利模乘法被用于模乘法。该处理器由Montgomery模乘法、模加法/减法、EC点倍增/加法、模乘法反演、EC点乘子、射影到仿射坐标转换和Montgomery到正表示转换等特殊操作块组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware implementation of an elliptic curve processor over GF(p)
We describe a hardware implementation of an arithmetic processor which is efficient for bit-lengths suitable for both commonly used types of public key cryptography (PKC), i.e., elliptic curve (EC) and RSA cryptosystems. Montgomery modular multiplication in a systolic array architecture is used for modular multiplication. The processor consists of special operational blocks for Montgomery modular multiplication, modular addition/subtraction, EC point doubling/addition, modular multiplicative inversion, EC point multiplier, projective to affine coordinates conversion and Montgomery to normal representation conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信