Ē. Sļedevskis, V. Gerbreders, V. Kolbjonoks, J. Teteris, A. Gulbis
{"title":"硒薄膜中的二次谐波产生","authors":"Ē. Sļedevskis, V. Gerbreders, V. Kolbjonoks, J. Teteris, A. Gulbis","doi":"10.1117/12.815490","DOIUrl":null,"url":null,"abstract":"Results of second harmonic (SH) generation in amorphous and crystalline selenium films induced by titanium-sapphire femtosecond laser (wavelength λ - 800-1000 nm) are presented. It is found that the highest intensity of SH is provided by fundamental wave at wavelength 1000 nm and it reaches maximum in approximately 100 sec. The intensity of transmitted SH depends on film thickness while that of reflected does not.","PeriodicalId":273853,"journal":{"name":"International Conference on Advanced Optical Materials and Devices","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Second harmonic generation in selenium thin films\",\"authors\":\"Ē. Sļedevskis, V. Gerbreders, V. Kolbjonoks, J. Teteris, A. Gulbis\",\"doi\":\"10.1117/12.815490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results of second harmonic (SH) generation in amorphous and crystalline selenium films induced by titanium-sapphire femtosecond laser (wavelength λ - 800-1000 nm) are presented. It is found that the highest intensity of SH is provided by fundamental wave at wavelength 1000 nm and it reaches maximum in approximately 100 sec. The intensity of transmitted SH depends on film thickness while that of reflected does not.\",\"PeriodicalId\":273853,\"journal\":{\"name\":\"International Conference on Advanced Optical Materials and Devices\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advanced Optical Materials and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.815490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advanced Optical Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.815490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Results of second harmonic (SH) generation in amorphous and crystalline selenium films induced by titanium-sapphire femtosecond laser (wavelength λ - 800-1000 nm) are presented. It is found that the highest intensity of SH is provided by fundamental wave at wavelength 1000 nm and it reaches maximum in approximately 100 sec. The intensity of transmitted SH depends on film thickness while that of reflected does not.