Chufan Lai, Qiangqiang Liu, Lu Feng, Chenglei Yue, Xi Chen, Yang Hu, Zhanyi Wang, Pengju Teng, Xiaoru Yuan
{"title":"交通传感器数据的交互与协同可视化分析","authors":"Chufan Lai, Qiangqiang Liu, Lu Feng, Chenglei Yue, Xi Chen, Yang Hu, Zhanyi Wang, Pengju Teng, Xiaoru Yuan","doi":"10.1109/VAST.2017.8585432","DOIUrl":null,"url":null,"abstract":"In VAST Challenge 2017, we propose an interactive and collaborative visual analytic system for the analysis of traffic sensor data. Our system fully incorporates the power of spatial-temporal visualization, sequence mining techniques and collaborative analysis. It allows users to conduct multi-facet and interactive data analysis in a highly efficient way. We discuss technical details in this report, and demonstrate the effectiveness of our system via convincing cases.","PeriodicalId":149607,"journal":{"name":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive and Collaborative Visual Analysis on Traffic Sensor Data\",\"authors\":\"Chufan Lai, Qiangqiang Liu, Lu Feng, Chenglei Yue, Xi Chen, Yang Hu, Zhanyi Wang, Pengju Teng, Xiaoru Yuan\",\"doi\":\"10.1109/VAST.2017.8585432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In VAST Challenge 2017, we propose an interactive and collaborative visual analytic system for the analysis of traffic sensor data. Our system fully incorporates the power of spatial-temporal visualization, sequence mining techniques and collaborative analysis. It allows users to conduct multi-facet and interactive data analysis in a highly efficient way. We discuss technical details in this report, and demonstrate the effectiveness of our system via convincing cases.\",\"PeriodicalId\":149607,\"journal\":{\"name\":\"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VAST.2017.8585432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2017.8585432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interactive and Collaborative Visual Analysis on Traffic Sensor Data
In VAST Challenge 2017, we propose an interactive and collaborative visual analytic system for the analysis of traffic sensor data. Our system fully incorporates the power of spatial-temporal visualization, sequence mining techniques and collaborative analysis. It allows users to conduct multi-facet and interactive data analysis in a highly efficient way. We discuss technical details in this report, and demonstrate the effectiveness of our system via convincing cases.