用模糊方法增强贝叶斯概率决策支持

Panagiotis Christias, M. Mocanu
{"title":"用模糊方法增强贝叶斯概率决策支持","authors":"Panagiotis Christias, M. Mocanu","doi":"10.1109/CSCS.2019.00049","DOIUrl":null,"url":null,"abstract":"This paper proposes an enhancement to a traditional decision making approach based on Bayes' mathematical theory. The objective is to develop an effective decision support under conditions of uncertainty while exploiting low measured or audited information. The case study will be the application of alternative interventions to buildings in order to improve their energy consumption. A fuzzy approach is examined which attempts to formulate a 'fair' membership function in order to produce weights and assist Bayes' method.","PeriodicalId":352411,"journal":{"name":"2019 22nd International Conference on Control Systems and Computer Science (CSCS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhancing Bayes' Probabilistic Decision Support with a Fuzzy Approach\",\"authors\":\"Panagiotis Christias, M. Mocanu\",\"doi\":\"10.1109/CSCS.2019.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an enhancement to a traditional decision making approach based on Bayes' mathematical theory. The objective is to develop an effective decision support under conditions of uncertainty while exploiting low measured or audited information. The case study will be the application of alternative interventions to buildings in order to improve their energy consumption. A fuzzy approach is examined which attempts to formulate a 'fair' membership function in order to produce weights and assist Bayes' method.\",\"PeriodicalId\":352411,\"journal\":{\"name\":\"2019 22nd International Conference on Control Systems and Computer Science (CSCS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22nd International Conference on Control Systems and Computer Science (CSCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCS.2019.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd International Conference on Control Systems and Computer Science (CSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCS.2019.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于贝叶斯数学理论的传统决策方法的改进。目标是在不确定条件下开发有效的决策支持,同时利用低计量或审计信息。案例研究将是对建筑的替代干预措施的应用,以改善其能源消耗。研究了一种模糊方法,该方法试图制定一个“公平”的隶属函数,以产生权重并辅助贝叶斯方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Bayes' Probabilistic Decision Support with a Fuzzy Approach
This paper proposes an enhancement to a traditional decision making approach based on Bayes' mathematical theory. The objective is to develop an effective decision support under conditions of uncertainty while exploiting low measured or audited information. The case study will be the application of alternative interventions to buildings in order to improve their energy consumption. A fuzzy approach is examined which attempts to formulate a 'fair' membership function in order to produce weights and assist Bayes' method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信