A. Dörflinger, Mark Albers, Benedikt Kleinbeck, Y. Guan, H. Michalik, Raphael Klink, Christopher Blochwitz, Anouar Nechi, Mladen Berekovic
{"title":"开源应用级RISC-V处理器实现的比较调查","authors":"A. Dörflinger, Mark Albers, Benedikt Kleinbeck, Y. Guan, H. Michalik, Raphael Klink, Christopher Blochwitz, Anouar Nechi, Mladen Berekovic","doi":"10.1145/3457388.3458657","DOIUrl":null,"url":null,"abstract":"The numerous emerging implementations of RISC-V processors and frameworks underline the success of this Instruction Set Architecture (ISA) specification. The free and open source character of many implementations facilitates their adoption in academic and commercial projects. As yet it is not easy to say which implementation fits best for a system with given requirements such as processing performance or power consumption. With varying backgrounds and histories, the developed RISC-V processors are very different from each other. Comparisons are difficult, because results are reported for arbitrary technologies and configuration settings. Scaling factors are used to draw comparisons, but this gives only rough estimates. In order to give more substantiated results, this paper compares the most prominent open-source application-class RISC-V projects by running identical benchmarks on identical platforms with defined configuration settings. The Rocket, BOOM, CVA6, and SHAKTI C-Class implementations are evaluated for processing performance, area and resource utilization, power consumption as well as efficiency. Results are presented for the Xilinx Virtex UltraScale+ family and GlobalFoundries 22FDX ASIC technology.","PeriodicalId":136482,"journal":{"name":"Proceedings of the 18th ACM International Conference on Computing Frontiers","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A comparative survey of open-source application-class RISC-V processor implementations\",\"authors\":\"A. Dörflinger, Mark Albers, Benedikt Kleinbeck, Y. Guan, H. Michalik, Raphael Klink, Christopher Blochwitz, Anouar Nechi, Mladen Berekovic\",\"doi\":\"10.1145/3457388.3458657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The numerous emerging implementations of RISC-V processors and frameworks underline the success of this Instruction Set Architecture (ISA) specification. The free and open source character of many implementations facilitates their adoption in academic and commercial projects. As yet it is not easy to say which implementation fits best for a system with given requirements such as processing performance or power consumption. With varying backgrounds and histories, the developed RISC-V processors are very different from each other. Comparisons are difficult, because results are reported for arbitrary technologies and configuration settings. Scaling factors are used to draw comparisons, but this gives only rough estimates. In order to give more substantiated results, this paper compares the most prominent open-source application-class RISC-V projects by running identical benchmarks on identical platforms with defined configuration settings. The Rocket, BOOM, CVA6, and SHAKTI C-Class implementations are evaluated for processing performance, area and resource utilization, power consumption as well as efficiency. Results are presented for the Xilinx Virtex UltraScale+ family and GlobalFoundries 22FDX ASIC technology.\",\"PeriodicalId\":136482,\"journal\":{\"name\":\"Proceedings of the 18th ACM International Conference on Computing Frontiers\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457388.3458657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457388.3458657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparative survey of open-source application-class RISC-V processor implementations
The numerous emerging implementations of RISC-V processors and frameworks underline the success of this Instruction Set Architecture (ISA) specification. The free and open source character of many implementations facilitates their adoption in academic and commercial projects. As yet it is not easy to say which implementation fits best for a system with given requirements such as processing performance or power consumption. With varying backgrounds and histories, the developed RISC-V processors are very different from each other. Comparisons are difficult, because results are reported for arbitrary technologies and configuration settings. Scaling factors are used to draw comparisons, but this gives only rough estimates. In order to give more substantiated results, this paper compares the most prominent open-source application-class RISC-V projects by running identical benchmarks on identical platforms with defined configuration settings. The Rocket, BOOM, CVA6, and SHAKTI C-Class implementations are evaluated for processing performance, area and resource utilization, power consumption as well as efficiency. Results are presented for the Xilinx Virtex UltraScale+ family and GlobalFoundries 22FDX ASIC technology.