Xiaokang Ye, X. Cai, X. Yin, J. Rodríguez-Piñeiro, Li Tian, Jianwu Dou
{"title":"基于无源探测的LTE网络空对地大数据辅助信道建模","authors":"Xiaokang Ye, X. Cai, X. Yin, J. Rodríguez-Piñeiro, Li Tian, Jianwu Dou","doi":"10.1109/GLOCOMW.2017.8269204","DOIUrl":null,"url":null,"abstract":"In this paper, a novel approach of channel modeling based on big data analysis is proposed that is applied to extract air-to-ground channel models from down-link signals collected by using an Unmanned Aerial Vehicle (UAV) in operating Long-Term-Evolution (LTE) networks. In this approach, the most \"sensitive\" channel parameter to the UAV height is chosen based on a feature selection algorithm from a parameter set consisting of nine channel parameters calculated from channel impulse responses. In the case considered here, the K-factor is found to be the most height-sensitive parameter. The behavior of the mean of K-factor is modeled as a piece-wise function against height which demonstrates a break point that is determined by assessing the contribution of height-dependent samples to the overall entropy. The residuals of subtracting the mean K-factor are statistically modeled. The results illustrate that the proposed big-data-assisted approach is applicable to provide accurate description of channel statistics versus the variables of interests.","PeriodicalId":345352,"journal":{"name":"2017 IEEE Globecom Workshops (GC Wkshps)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Air-to-Ground Big-Data-Assisted Channel Modeling Based on Passive Sounding in LTE Networks\",\"authors\":\"Xiaokang Ye, X. Cai, X. Yin, J. Rodríguez-Piñeiro, Li Tian, Jianwu Dou\",\"doi\":\"10.1109/GLOCOMW.2017.8269204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel approach of channel modeling based on big data analysis is proposed that is applied to extract air-to-ground channel models from down-link signals collected by using an Unmanned Aerial Vehicle (UAV) in operating Long-Term-Evolution (LTE) networks. In this approach, the most \\\"sensitive\\\" channel parameter to the UAV height is chosen based on a feature selection algorithm from a parameter set consisting of nine channel parameters calculated from channel impulse responses. In the case considered here, the K-factor is found to be the most height-sensitive parameter. The behavior of the mean of K-factor is modeled as a piece-wise function against height which demonstrates a break point that is determined by assessing the contribution of height-dependent samples to the overall entropy. The residuals of subtracting the mean K-factor are statistically modeled. The results illustrate that the proposed big-data-assisted approach is applicable to provide accurate description of channel statistics versus the variables of interests.\",\"PeriodicalId\":345352,\"journal\":{\"name\":\"2017 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2017.8269204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2017.8269204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Air-to-Ground Big-Data-Assisted Channel Modeling Based on Passive Sounding in LTE Networks
In this paper, a novel approach of channel modeling based on big data analysis is proposed that is applied to extract air-to-ground channel models from down-link signals collected by using an Unmanned Aerial Vehicle (UAV) in operating Long-Term-Evolution (LTE) networks. In this approach, the most "sensitive" channel parameter to the UAV height is chosen based on a feature selection algorithm from a parameter set consisting of nine channel parameters calculated from channel impulse responses. In the case considered here, the K-factor is found to be the most height-sensitive parameter. The behavior of the mean of K-factor is modeled as a piece-wise function against height which demonstrates a break point that is determined by assessing the contribution of height-dependent samples to the overall entropy. The residuals of subtracting the mean K-factor are statistically modeled. The results illustrate that the proposed big-data-assisted approach is applicable to provide accurate description of channel statistics versus the variables of interests.