Dominik Soukup, Peter Tisovčík, Karel Hynek, T. Čejka
{"title":"网络流量领域数据集质量评价研究","authors":"Dominik Soukup, Peter Tisovčík, Karel Hynek, T. Čejka","doi":"10.23919/CNSM52442.2021.9615601","DOIUrl":null,"url":null,"abstract":"This paper deals with the quality of network traffic datasets created to train and validate machine learning classification and detection methods. Naturally, there is a long epoch of research targeted at data quality; however, it is focused mainly on data consistency, validity, precision, and other metrics, which are insufficient for network traffic use-cases. The rise of Machine learning usage in network monitoring applications requires a new methodology for evaluation datasets. There is a need to evaluate and compare traffic samples captured at different conditions and decide the usability of the already captured and annotated data. This paper aims to explain a use case of dataset creation, propose definitions regarding the quality of the network traffic datasets, and finally, describe a framework for datasets analysis.","PeriodicalId":358223,"journal":{"name":"2021 17th International Conference on Network and Service Management (CNSM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards Evaluating Quality of Datasets for Network Traffic Domain\",\"authors\":\"Dominik Soukup, Peter Tisovčík, Karel Hynek, T. Čejka\",\"doi\":\"10.23919/CNSM52442.2021.9615601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the quality of network traffic datasets created to train and validate machine learning classification and detection methods. Naturally, there is a long epoch of research targeted at data quality; however, it is focused mainly on data consistency, validity, precision, and other metrics, which are insufficient for network traffic use-cases. The rise of Machine learning usage in network monitoring applications requires a new methodology for evaluation datasets. There is a need to evaluate and compare traffic samples captured at different conditions and decide the usability of the already captured and annotated data. This paper aims to explain a use case of dataset creation, propose definitions regarding the quality of the network traffic datasets, and finally, describe a framework for datasets analysis.\",\"PeriodicalId\":358223,\"journal\":{\"name\":\"2021 17th International Conference on Network and Service Management (CNSM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CNSM52442.2021.9615601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM52442.2021.9615601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Evaluating Quality of Datasets for Network Traffic Domain
This paper deals with the quality of network traffic datasets created to train and validate machine learning classification and detection methods. Naturally, there is a long epoch of research targeted at data quality; however, it is focused mainly on data consistency, validity, precision, and other metrics, which are insufficient for network traffic use-cases. The rise of Machine learning usage in network monitoring applications requires a new methodology for evaluation datasets. There is a need to evaluate and compare traffic samples captured at different conditions and decide the usability of the already captured and annotated data. This paper aims to explain a use case of dataset creation, propose definitions regarding the quality of the network traffic datasets, and finally, describe a framework for datasets analysis.