HyLECA:开发混合长期参与控制会话代理的框架

E. Basar, D. Balaji, Linwei He, Iris Hendrickx, Emiel Krahmer, G. de Bruijn, Tibor Bosse
{"title":"HyLECA:开发混合长期参与控制会话代理的框架","authors":"E. Basar, D. Balaji, Linwei He, Iris Hendrickx, Emiel Krahmer, G. de Bruijn, Tibor Bosse","doi":"10.1145/3571884.3604404","DOIUrl":null,"url":null,"abstract":"We present HyLECA, an open-source framework designed for the development of long-term engaging controlled conversational agents. HyLECA’s dialogue manager employs a hybrid architecture, combining rule-based methods for controlled dialogue flows with retrieval-based and generation-based approaches to enhance the utterance variability and flexibility. The motivation behind HyLECA lies in enhancing user engagement and enjoyment in task-oriented chatbots by leveraging the natural language generation capabilities of open-domain large language models within the confines of predetermined dialogue flows. Moreover, we discuss the technical capabilities, potential applications, relevance, and adaptability of the system. Lastly, we report preliminary findings from integrating state-of-the-art large language models in simulating a conversation centred on smoking cessation.","PeriodicalId":127379,"journal":{"name":"Proceedings of the 5th International Conference on Conversational User Interfaces","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"HyLECA: A Framework for Developing Hybrid Long-term Engaging Controlled Conversational Agents\",\"authors\":\"E. Basar, D. Balaji, Linwei He, Iris Hendrickx, Emiel Krahmer, G. de Bruijn, Tibor Bosse\",\"doi\":\"10.1145/3571884.3604404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present HyLECA, an open-source framework designed for the development of long-term engaging controlled conversational agents. HyLECA’s dialogue manager employs a hybrid architecture, combining rule-based methods for controlled dialogue flows with retrieval-based and generation-based approaches to enhance the utterance variability and flexibility. The motivation behind HyLECA lies in enhancing user engagement and enjoyment in task-oriented chatbots by leveraging the natural language generation capabilities of open-domain large language models within the confines of predetermined dialogue flows. Moreover, we discuss the technical capabilities, potential applications, relevance, and adaptability of the system. Lastly, we report preliminary findings from integrating state-of-the-art large language models in simulating a conversation centred on smoking cessation.\",\"PeriodicalId\":127379,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Conversational User Interfaces\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Conversational User Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3571884.3604404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Conversational User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571884.3604404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了HyLECA,一个开源框架,旨在开发长期参与的受控会话代理。HyLECA的对话管理器采用混合架构,将基于规则的受控对话流方法与基于检索和基于生成的方法相结合,以增强话语的可变性和灵活性。HyLECA背后的动机在于通过在预定的对话流范围内利用开放域大型语言模型的自然语言生成能力来增强面向任务的聊天机器人的用户参与度和乐趣。此外,我们还讨论了系统的技术能力、潜在应用、相关性和适应性。最后,我们报告了通过整合最先进的大型语言模型来模拟以戒烟为中心的对话的初步发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HyLECA: A Framework for Developing Hybrid Long-term Engaging Controlled Conversational Agents
We present HyLECA, an open-source framework designed for the development of long-term engaging controlled conversational agents. HyLECA’s dialogue manager employs a hybrid architecture, combining rule-based methods for controlled dialogue flows with retrieval-based and generation-based approaches to enhance the utterance variability and flexibility. The motivation behind HyLECA lies in enhancing user engagement and enjoyment in task-oriented chatbots by leveraging the natural language generation capabilities of open-domain large language models within the confines of predetermined dialogue flows. Moreover, we discuss the technical capabilities, potential applications, relevance, and adaptability of the system. Lastly, we report preliminary findings from integrating state-of-the-art large language models in simulating a conversation centred on smoking cessation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信