用于行人检测的堆叠自编码器的评价

B. Peralta, Luis Parra, L. Caro
{"title":"用于行人检测的堆叠自编码器的评价","authors":"B. Peralta, Luis Parra, L. Caro","doi":"10.1109/SCCC.2016.7836017","DOIUrl":null,"url":null,"abstract":"Pedestrian detection has multiple applications as video surveillance, automatic driver-assistance systems in vehicles or visual control of access. This task is challenging due to presence of factors such as poor lighting, occlusion or uncertainty in the environment. Deep learning has reached many state-of-art results in visual recognition, where one popular and simple variant is stacked autoencoders. Nonetheless, it is not clear what is the effect of each stacked autoencoders parameter in pedestrian detection performance. In this work, we propose to revise the feature representation for pedestrian detection considering the use of deep learning using stacked autoencoders with a sensitivity analysis of relevant parameters. Additionally, this paper presents a methodology for feature extraction using stacked autoencoders. The experiments show that this model is capable of creating a meaningful visual descriptor for pedestrian detection, which improves the detection performance in comparison to baseline techniques without an optimal setting of parameters. In presence of occlusion or poor people images, we found diffuse and distorted visual patterns. A future avenue is the learning of the degree of noise for improving the generalization capabilities of the learned features.","PeriodicalId":432676,"journal":{"name":"2016 35th International Conference of the Chilean Computer Science Society (SCCC)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of stacked autoencoders for pedestrian detection\",\"authors\":\"B. Peralta, Luis Parra, L. Caro\",\"doi\":\"10.1109/SCCC.2016.7836017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian detection has multiple applications as video surveillance, automatic driver-assistance systems in vehicles or visual control of access. This task is challenging due to presence of factors such as poor lighting, occlusion or uncertainty in the environment. Deep learning has reached many state-of-art results in visual recognition, where one popular and simple variant is stacked autoencoders. Nonetheless, it is not clear what is the effect of each stacked autoencoders parameter in pedestrian detection performance. In this work, we propose to revise the feature representation for pedestrian detection considering the use of deep learning using stacked autoencoders with a sensitivity analysis of relevant parameters. Additionally, this paper presents a methodology for feature extraction using stacked autoencoders. The experiments show that this model is capable of creating a meaningful visual descriptor for pedestrian detection, which improves the detection performance in comparison to baseline techniques without an optimal setting of parameters. In presence of occlusion or poor people images, we found diffuse and distorted visual patterns. A future avenue is the learning of the degree of noise for improving the generalization capabilities of the learned features.\",\"PeriodicalId\":432676,\"journal\":{\"name\":\"2016 35th International Conference of the Chilean Computer Science Society (SCCC)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 35th International Conference of the Chilean Computer Science Society (SCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCCC.2016.7836017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 35th International Conference of the Chilean Computer Science Society (SCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2016.7836017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

行人检测有多种应用,如视频监控、车辆自动驾驶辅助系统或视觉控制。由于存在诸如光线不足、遮挡或环境不确定性等因素,这项任务具有挑战性。深度学习在视觉识别方面已经取得了许多最先进的成果,其中一个流行而简单的变体是堆叠自动编码器。然而,目前尚不清楚每个堆叠自编码器参数对行人检测性能的影响。在这项工作中,我们建议修改行人检测的特征表示,考虑使用深度学习,使用具有相关参数敏感性分析的堆叠自编码器。此外,本文还提出了一种使用堆叠自编码器进行特征提取的方法。实验表明,该模型能够为行人检测创建有意义的视觉描述符,与没有最优参数设置的基线技术相比,该模型提高了检测性能。在存在遮挡或穷人图像的情况下,我们发现漫射和扭曲的视觉模式。一个未来的途径是学习噪声的程度,以提高学习到的特征的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of stacked autoencoders for pedestrian detection
Pedestrian detection has multiple applications as video surveillance, automatic driver-assistance systems in vehicles or visual control of access. This task is challenging due to presence of factors such as poor lighting, occlusion or uncertainty in the environment. Deep learning has reached many state-of-art results in visual recognition, where one popular and simple variant is stacked autoencoders. Nonetheless, it is not clear what is the effect of each stacked autoencoders parameter in pedestrian detection performance. In this work, we propose to revise the feature representation for pedestrian detection considering the use of deep learning using stacked autoencoders with a sensitivity analysis of relevant parameters. Additionally, this paper presents a methodology for feature extraction using stacked autoencoders. The experiments show that this model is capable of creating a meaningful visual descriptor for pedestrian detection, which improves the detection performance in comparison to baseline techniques without an optimal setting of parameters. In presence of occlusion or poor people images, we found diffuse and distorted visual patterns. A future avenue is the learning of the degree of noise for improving the generalization capabilities of the learned features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信