说话人识别的特征匹配技术

P. Sangwan
{"title":"说话人识别的特征匹配技术","authors":"P. Sangwan","doi":"10.18311/GJEIS/2018/16126","DOIUrl":null,"url":null,"abstract":"Speaker recognition is a stream of biometric authorization which deals with the automatic identification of individual person using some inherent characteristics of that individual. The last stage of this system is the classification of feature templates generated during the previous stage i.e. feature extraction. This classification stage, also known as feature matching, provides the final decision about the speaker under observation. Hence, it is most important to use appropriate feature matching technique to get the accurate result. There are numerous feature matching techniques which can be used for the purpose. The present work provides an analysis of the various feature matching techniques used in the final step of a speaker recognition system. These techniques can be categorized in Statistical techniques, Soft-computing techniques and hybrid techniques. Statistical techniques include: “Vector Quantization (VQ), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) etc.”, while Soft-computing techniques are “Artificial Neural Network (ANN), Support Vector Machine (SVM) and Fuzzy logic etc.” Hybrid techniques make use of both the above said techniques.","PeriodicalId":318809,"journal":{"name":"Global Journal of Enterprise Information System","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Matching Techniques for Speaker Recognition\",\"authors\":\"P. Sangwan\",\"doi\":\"10.18311/GJEIS/2018/16126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speaker recognition is a stream of biometric authorization which deals with the automatic identification of individual person using some inherent characteristics of that individual. The last stage of this system is the classification of feature templates generated during the previous stage i.e. feature extraction. This classification stage, also known as feature matching, provides the final decision about the speaker under observation. Hence, it is most important to use appropriate feature matching technique to get the accurate result. There are numerous feature matching techniques which can be used for the purpose. The present work provides an analysis of the various feature matching techniques used in the final step of a speaker recognition system. These techniques can be categorized in Statistical techniques, Soft-computing techniques and hybrid techniques. Statistical techniques include: “Vector Quantization (VQ), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) etc.”, while Soft-computing techniques are “Artificial Neural Network (ANN), Support Vector Machine (SVM) and Fuzzy logic etc.” Hybrid techniques make use of both the above said techniques.\",\"PeriodicalId\":318809,\"journal\":{\"name\":\"Global Journal of Enterprise Information System\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Enterprise Information System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/GJEIS/2018/16126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Enterprise Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/GJEIS/2018/16126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

说话人识别是一种生物识别授权流,它利用个人的某些固有特征对个人进行自动识别。该系统的最后一个阶段是对前一阶段生成的特征模板进行分类,即特征提取。这个分类阶段,也被称为特征匹配,提供了对被观察说话人的最终判断。因此,使用合适的特征匹配技术来获得准确的结果是非常重要的。有许多特征匹配技术可用于此目的。本文分析了在说话人识别系统的最后一步中使用的各种特征匹配技术。这些技术可分为统计技术、软计算技术和混合技术。统计技术包括:“矢量量化(VQ),高斯混合模型(GMM),隐马尔可夫模型(HMM)等”,而软计算技术是“人工神经网络(ANN),支持向量机(SVM)和模糊逻辑等”混合技术利用上述两种技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Matching Techniques for Speaker Recognition
Speaker recognition is a stream of biometric authorization which deals with the automatic identification of individual person using some inherent characteristics of that individual. The last stage of this system is the classification of feature templates generated during the previous stage i.e. feature extraction. This classification stage, also known as feature matching, provides the final decision about the speaker under observation. Hence, it is most important to use appropriate feature matching technique to get the accurate result. There are numerous feature matching techniques which can be used for the purpose. The present work provides an analysis of the various feature matching techniques used in the final step of a speaker recognition system. These techniques can be categorized in Statistical techniques, Soft-computing techniques and hybrid techniques. Statistical techniques include: “Vector Quantization (VQ), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) etc.”, while Soft-computing techniques are “Artificial Neural Network (ANN), Support Vector Machine (SVM) and Fuzzy logic etc.” Hybrid techniques make use of both the above said techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信