基于填充函数法的Rn约束全局优化算法

Wei-xiang Wang, Y. Shang
{"title":"基于填充函数法的Rn约束全局优化算法","authors":"Wei-xiang Wang, Y. Shang","doi":"10.1109/WKDD.2008.123","DOIUrl":null,"url":null,"abstract":"Many aspects in the study of the development and the use of advanced information technologies and systems involves constrained global optimization. In this paper, a filled function with one parameter is proposed for escaping the current local minimizer. Then a new algorithm for obtaining a global optimizer is presented. Using this method, a global minimizer can be obtained just by searching for local optimizers of the original problem and some certain unconstrained optimization problems. The numerical results show the efficiency of this method.","PeriodicalId":101656,"journal":{"name":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Algorithm for Rn Constrained Global Optimization Based on Filled Function Method\",\"authors\":\"Wei-xiang Wang, Y. Shang\",\"doi\":\"10.1109/WKDD.2008.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many aspects in the study of the development and the use of advanced information technologies and systems involves constrained global optimization. In this paper, a filled function with one parameter is proposed for escaping the current local minimizer. Then a new algorithm for obtaining a global optimizer is presented. Using this method, a global minimizer can be obtained just by searching for local optimizers of the original problem and some certain unconstrained optimization problems. The numerical results show the efficiency of this method.\",\"PeriodicalId\":101656,\"journal\":{\"name\":\"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WKDD.2008.123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2008.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在研究开发和使用先进的信息技术和系统的许多方面涉及约束全局优化。本文提出了一个带一个参数的填充函数来转义当前的局部最小值。在此基础上,提出了一种求全局优化器的新算法。利用该方法,只需搜索原问题和某些无约束优化问题的局部优化器,即可得到全局最优解。数值结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Algorithm for Rn Constrained Global Optimization Based on Filled Function Method
Many aspects in the study of the development and the use of advanced information technologies and systems involves constrained global optimization. In this paper, a filled function with one parameter is proposed for escaping the current local minimizer. Then a new algorithm for obtaining a global optimizer is presented. Using this method, a global minimizer can be obtained just by searching for local optimizers of the original problem and some certain unconstrained optimization problems. The numerical results show the efficiency of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信