{"title":"带操作数预标化的复除法","authors":"J. Muller","doi":"10.1109/ASAP.2003.1212854","DOIUrl":null,"url":null,"abstract":"We adapt the radix-r digit-recurrence division algorithm to complex division. By prescaling the operands, we make the selection of quotient digits simple. This leads to a simple hardware implementation, and allows correct rounding of complex quotient. To reduce large prescaling tables required for radices greater than 4, we adapt the bipartite-table method to multiple-operand functions.","PeriodicalId":261592,"journal":{"name":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Complex division with prescaling of operands\",\"authors\":\"J. Muller\",\"doi\":\"10.1109/ASAP.2003.1212854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We adapt the radix-r digit-recurrence division algorithm to complex division. By prescaling the operands, we make the selection of quotient digits simple. This leads to a simple hardware implementation, and allows correct rounding of complex quotient. To reduce large prescaling tables required for radices greater than 4, we adapt the bipartite-table method to multiple-operand functions.\",\"PeriodicalId\":261592,\"journal\":{\"name\":\"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2003.1212854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2003.1212854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We adapt the radix-r digit-recurrence division algorithm to complex division. By prescaling the operands, we make the selection of quotient digits simple. This leads to a simple hardware implementation, and allows correct rounding of complex quotient. To reduce large prescaling tables required for radices greater than 4, we adapt the bipartite-table method to multiple-operand functions.