基于HJ-CCD数据的太湖水质监测实证模型

Junsheng Li, Bing Zhang, Q. Shen, Lei Zou, Liwei Li
{"title":"基于HJ-CCD数据的太湖水质监测实证模型","authors":"Junsheng Li, Bing Zhang, Q. Shen, Lei Zou, Liwei Li","doi":"10.1109/IGARSS.2012.6351438","DOIUrl":null,"url":null,"abstract":"HJ-CCD data has a great potential in monitoring water quality of inland waters. To test the HJ-CCD data application results of inland water quality monitoring, we carried out a sampling experiment in Lake Taihu. When HJ-1 satellite passing, we obtained synchronously 30 samples of remote sensing reflectance spectra, the concentration of total suspended matter (TSM), transparency and turbidity data. Regression analyzing with 27 sampling stations of water quality parameter data and the water remote sensing reflectance obtained in Lake Taihu, we established the empirical retrieval models of concentrations of TSM, transparency and turbidity. Based on these models we obtained the TSM, transparency and turbidity distribution maps in Lake Taihu using the HJ-CCD image. Finally testing retrieval results with the reserved three sampling stations of the water surface quality parameters, the average relative error is less than 0.2. This result indicates the retrieval accuracy of inland water quality parameters from HJ-CCD data satisfied basically the application requirements.","PeriodicalId":193438,"journal":{"name":"2012 IEEE International Geoscience and Remote Sensing Symposium","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Monitoring water quality of Lake Taihu from HJ-CCD data using empirical models\",\"authors\":\"Junsheng Li, Bing Zhang, Q. Shen, Lei Zou, Liwei Li\",\"doi\":\"10.1109/IGARSS.2012.6351438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"HJ-CCD data has a great potential in monitoring water quality of inland waters. To test the HJ-CCD data application results of inland water quality monitoring, we carried out a sampling experiment in Lake Taihu. When HJ-1 satellite passing, we obtained synchronously 30 samples of remote sensing reflectance spectra, the concentration of total suspended matter (TSM), transparency and turbidity data. Regression analyzing with 27 sampling stations of water quality parameter data and the water remote sensing reflectance obtained in Lake Taihu, we established the empirical retrieval models of concentrations of TSM, transparency and turbidity. Based on these models we obtained the TSM, transparency and turbidity distribution maps in Lake Taihu using the HJ-CCD image. Finally testing retrieval results with the reserved three sampling stations of the water surface quality parameters, the average relative error is less than 0.2. This result indicates the retrieval accuracy of inland water quality parameters from HJ-CCD data satisfied basically the application requirements.\",\"PeriodicalId\":193438,\"journal\":{\"name\":\"2012 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2012.6351438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2012.6351438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

HJ-CCD数据在内陆水域水质监测中具有很大的潜力。为了验证HJ-CCD数据在内陆水质监测中的应用效果,我们在太湖进行了采样实验。当HJ-1卫星经过时,我们同步获取了30个样本的遥感反射光谱、总悬浮物(TSM)浓度、透明度和浊度数据。利用太湖27个采样站的水质参数数据和水体遥感反射率数据进行回归分析,建立了TSM浓度、透明度和浊度的经验反演模型。基于这些模型,利用HJ-CCD图像获得了太湖的TSM、透明度和浊度分布图。最后对保留的3个采样站的水面水质参数反演结果进行测试,平均相对误差小于0.2。结果表明,利用HJ-CCD数据反演内陆水质参数的精度基本满足应用要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring water quality of Lake Taihu from HJ-CCD data using empirical models
HJ-CCD data has a great potential in monitoring water quality of inland waters. To test the HJ-CCD data application results of inland water quality monitoring, we carried out a sampling experiment in Lake Taihu. When HJ-1 satellite passing, we obtained synchronously 30 samples of remote sensing reflectance spectra, the concentration of total suspended matter (TSM), transparency and turbidity data. Regression analyzing with 27 sampling stations of water quality parameter data and the water remote sensing reflectance obtained in Lake Taihu, we established the empirical retrieval models of concentrations of TSM, transparency and turbidity. Based on these models we obtained the TSM, transparency and turbidity distribution maps in Lake Taihu using the HJ-CCD image. Finally testing retrieval results with the reserved three sampling stations of the water surface quality parameters, the average relative error is less than 0.2. This result indicates the retrieval accuracy of inland water quality parameters from HJ-CCD data satisfied basically the application requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信