圆柱电池模块相变材料(PCM)热管理结构实验研究

Foo Shen Hwang, Colin J. Reidy, D. Picovici, D. Callaghan, D. Culliton, Cathal Nolan, T. Confrey
{"title":"圆柱电池模块相变材料(PCM)热管理结构实验研究","authors":"Foo Shen Hwang, Colin J. Reidy, D. Picovici, D. Callaghan, D. Culliton, Cathal Nolan, T. Confrey","doi":"10.1109/ITEC55900.2023.10187086","DOIUrl":null,"url":null,"abstract":"The effectiveness of a passive modular li-ion battery thermal management system (BTMS) comprising of a PCM and hexagonal aluminum fin structure was experimentally examined in this study. The maximum temperature rise of a li-ion cell attached to the prototype was recorded as it is discharged under a 1C, 2C and 3C discharge rate and its results are then compared to a li-ion cell cooled under natural convection conditions. From the results obtained, the prototype was able to maintain the cell temperature at its optimum temperature between 15°C to 35°C for all three discharge rates whereas the li-ion cell under natural convection was only able to maintain an optimal operating temperature at a 1C discharge rate. The Nusselt number of the prototype was also examined and it was determined that the Nusselt number decreases as the discharge rate of the battery increases signifying a reduction in the heat transfer rate of the prototype at higher discharge rates.","PeriodicalId":234784,"journal":{"name":"2023 IEEE Transportation Electrification Conference & Expo (ITEC)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation on Modular Phase Change Material (PCM) Thermal Management Structure for Cylindrical Battery Cells\",\"authors\":\"Foo Shen Hwang, Colin J. Reidy, D. Picovici, D. Callaghan, D. Culliton, Cathal Nolan, T. Confrey\",\"doi\":\"10.1109/ITEC55900.2023.10187086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effectiveness of a passive modular li-ion battery thermal management system (BTMS) comprising of a PCM and hexagonal aluminum fin structure was experimentally examined in this study. The maximum temperature rise of a li-ion cell attached to the prototype was recorded as it is discharged under a 1C, 2C and 3C discharge rate and its results are then compared to a li-ion cell cooled under natural convection conditions. From the results obtained, the prototype was able to maintain the cell temperature at its optimum temperature between 15°C to 35°C for all three discharge rates whereas the li-ion cell under natural convection was only able to maintain an optimal operating temperature at a 1C discharge rate. The Nusselt number of the prototype was also examined and it was determined that the Nusselt number decreases as the discharge rate of the battery increases signifying a reduction in the heat transfer rate of the prototype at higher discharge rates.\",\"PeriodicalId\":234784,\"journal\":{\"name\":\"2023 IEEE Transportation Electrification Conference & Expo (ITEC)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Transportation Electrification Conference & Expo (ITEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITEC55900.2023.10187086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Transportation Electrification Conference & Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC55900.2023.10187086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实验研究了由PCM和六边形铝翅片结构组成的无源模块化锂离子电池热管理系统(BTMS)的有效性。将附着在原型上的锂离子电池在1C、2C和3C放电速率下的最高温升记录下来,并将其结果与自然对流条件下冷却的锂离子电池进行比较。从获得的结果来看,在所有三种放电速率下,原型电池都能够将电池温度保持在15°C至35°C之间的最佳温度,而自然对流下的锂离子电池只能在1C放电速率下保持最佳工作温度。对原型的努塞尔数也进行了检测,确定努塞尔数随着电池放电速率的增加而降低,这表明在较高的放电速率下原型的传热速率降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigation on Modular Phase Change Material (PCM) Thermal Management Structure for Cylindrical Battery Cells
The effectiveness of a passive modular li-ion battery thermal management system (BTMS) comprising of a PCM and hexagonal aluminum fin structure was experimentally examined in this study. The maximum temperature rise of a li-ion cell attached to the prototype was recorded as it is discharged under a 1C, 2C and 3C discharge rate and its results are then compared to a li-ion cell cooled under natural convection conditions. From the results obtained, the prototype was able to maintain the cell temperature at its optimum temperature between 15°C to 35°C for all three discharge rates whereas the li-ion cell under natural convection was only able to maintain an optimal operating temperature at a 1C discharge rate. The Nusselt number of the prototype was also examined and it was determined that the Nusselt number decreases as the discharge rate of the battery increases signifying a reduction in the heat transfer rate of the prototype at higher discharge rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信