用于TinyML应用的1036 TOp/s/W、12.2 mW、2.72 μJ/Inference全数字TNN加速器

Moritz Scherer, Alfio Di Mauro, Georg Rutishauser, Tim Fischer, L. Benini
{"title":"用于TinyML应用的1036 TOp/s/W、12.2 mW、2.72 μJ/Inference全数字TNN加速器","authors":"Moritz Scherer, Alfio Di Mauro, Georg Rutishauser, Tim Fischer, L. Benini","doi":"10.1109/coolchips54332.2022.9772668","DOIUrl":null,"url":null,"abstract":"Tiny Machine Learning (TinyML) applications impose μJ/Inference constraints, with maximum power consumption of a few tens of mW. It is extremely challenging to meet these requirement at a reasonable accuracy level. In this work, we address this challenge with a flexible, fully digital Ternary Neural Network (TNN) accelerator in a RISC-V-based SoC. The design achieves 2.72 μJ/Inference, 12.2 mW, 3200 Inferences/sec at 0.5 V for a non-trivial 9-layer, 96 channels-per-layer network with CIFAR-10 accuracy of 86 %. The peak energy efficiency is 1036 TOp/s/W, outperforming the state-of-the-art in silicon-proven TinyML accelerators by 1.67x.","PeriodicalId":266152,"journal":{"name":"2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","volume":"55 Pt B 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A 1036 TOp/s/W, 12.2 mW, 2.72 μJ/Inference All Digital TNN Accelerator in 22 nm FDX Technology for TinyML Applications\",\"authors\":\"Moritz Scherer, Alfio Di Mauro, Georg Rutishauser, Tim Fischer, L. Benini\",\"doi\":\"10.1109/coolchips54332.2022.9772668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tiny Machine Learning (TinyML) applications impose μJ/Inference constraints, with maximum power consumption of a few tens of mW. It is extremely challenging to meet these requirement at a reasonable accuracy level. In this work, we address this challenge with a flexible, fully digital Ternary Neural Network (TNN) accelerator in a RISC-V-based SoC. The design achieves 2.72 μJ/Inference, 12.2 mW, 3200 Inferences/sec at 0.5 V for a non-trivial 9-layer, 96 channels-per-layer network with CIFAR-10 accuracy of 86 %. The peak energy efficiency is 1036 TOp/s/W, outperforming the state-of-the-art in silicon-proven TinyML accelerators by 1.67x.\",\"PeriodicalId\":266152,\"journal\":{\"name\":\"2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)\",\"volume\":\"55 Pt B 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/coolchips54332.2022.9772668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/coolchips54332.2022.9772668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

微型机器学习(TinyML)应用程序施加μJ/Inference约束,最大功耗为几十mW。在合理的精度水平上满足这些要求是极具挑战性的。在这项工作中,我们在基于risc - v的SoC中使用灵活的全数字三元神经网络(TNN)加速器来解决这一挑战。该设计实现了2.72 μJ/Inference, 12.2 mW, 3200 Inferences/sec,在0.5 V下实现了9层,每层96通道的重要网络,CIFAR-10精度为86%。峰值能量效率为1036 TOp/s/W,比最先进的经硅验证的TinyML加速器高出1.67倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 1036 TOp/s/W, 12.2 mW, 2.72 μJ/Inference All Digital TNN Accelerator in 22 nm FDX Technology for TinyML Applications
Tiny Machine Learning (TinyML) applications impose μJ/Inference constraints, with maximum power consumption of a few tens of mW. It is extremely challenging to meet these requirement at a reasonable accuracy level. In this work, we address this challenge with a flexible, fully digital Ternary Neural Network (TNN) accelerator in a RISC-V-based SoC. The design achieves 2.72 μJ/Inference, 12.2 mW, 3200 Inferences/sec at 0.5 V for a non-trivial 9-layer, 96 channels-per-layer network with CIFAR-10 accuracy of 86 %. The peak energy efficiency is 1036 TOp/s/W, outperforming the state-of-the-art in silicon-proven TinyML accelerators by 1.67x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信