Moritz Scherer, Alfio Di Mauro, Georg Rutishauser, Tim Fischer, L. Benini
{"title":"用于TinyML应用的1036 TOp/s/W、12.2 mW、2.72 μJ/Inference全数字TNN加速器","authors":"Moritz Scherer, Alfio Di Mauro, Georg Rutishauser, Tim Fischer, L. Benini","doi":"10.1109/coolchips54332.2022.9772668","DOIUrl":null,"url":null,"abstract":"Tiny Machine Learning (TinyML) applications impose μJ/Inference constraints, with maximum power consumption of a few tens of mW. It is extremely challenging to meet these requirement at a reasonable accuracy level. In this work, we address this challenge with a flexible, fully digital Ternary Neural Network (TNN) accelerator in a RISC-V-based SoC. The design achieves 2.72 μJ/Inference, 12.2 mW, 3200 Inferences/sec at 0.5 V for a non-trivial 9-layer, 96 channels-per-layer network with CIFAR-10 accuracy of 86 %. The peak energy efficiency is 1036 TOp/s/W, outperforming the state-of-the-art in silicon-proven TinyML accelerators by 1.67x.","PeriodicalId":266152,"journal":{"name":"2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","volume":"55 Pt B 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A 1036 TOp/s/W, 12.2 mW, 2.72 μJ/Inference All Digital TNN Accelerator in 22 nm FDX Technology for TinyML Applications\",\"authors\":\"Moritz Scherer, Alfio Di Mauro, Georg Rutishauser, Tim Fischer, L. Benini\",\"doi\":\"10.1109/coolchips54332.2022.9772668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tiny Machine Learning (TinyML) applications impose μJ/Inference constraints, with maximum power consumption of a few tens of mW. It is extremely challenging to meet these requirement at a reasonable accuracy level. In this work, we address this challenge with a flexible, fully digital Ternary Neural Network (TNN) accelerator in a RISC-V-based SoC. The design achieves 2.72 μJ/Inference, 12.2 mW, 3200 Inferences/sec at 0.5 V for a non-trivial 9-layer, 96 channels-per-layer network with CIFAR-10 accuracy of 86 %. The peak energy efficiency is 1036 TOp/s/W, outperforming the state-of-the-art in silicon-proven TinyML accelerators by 1.67x.\",\"PeriodicalId\":266152,\"journal\":{\"name\":\"2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)\",\"volume\":\"55 Pt B 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/coolchips54332.2022.9772668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/coolchips54332.2022.9772668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 1036 TOp/s/W, 12.2 mW, 2.72 μJ/Inference All Digital TNN Accelerator in 22 nm FDX Technology for TinyML Applications
Tiny Machine Learning (TinyML) applications impose μJ/Inference constraints, with maximum power consumption of a few tens of mW. It is extremely challenging to meet these requirement at a reasonable accuracy level. In this work, we address this challenge with a flexible, fully digital Ternary Neural Network (TNN) accelerator in a RISC-V-based SoC. The design achieves 2.72 μJ/Inference, 12.2 mW, 3200 Inferences/sec at 0.5 V for a non-trivial 9-layer, 96 channels-per-layer network with CIFAR-10 accuracy of 86 %. The peak energy efficiency is 1036 TOp/s/W, outperforming the state-of-the-art in silicon-proven TinyML accelerators by 1.67x.