基于13.2pJ/Sample的时域双相准静态脑通信和直接模拟时间转换的无adc神经植入芯片(1.8\mu\ mathm {W}\ 5.5$ mm3

Baibhab Chatterjee, K. G. Kumar, Shulan Xiao, Gourab Barik, K. Jayant, Shreyas Sen
{"title":"基于13.2pJ/Sample的时域双相准静态脑通信和直接模拟时间转换的无adc神经植入芯片(1.8\\mu\\ mathm {W}\\ 5.5$ mm3","authors":"Baibhab Chatterjee, K. G. Kumar, Shulan Xiao, Gourab Barik, K. Jayant, Shreyas Sen","doi":"10.1109/ESSCIRC55480.2022.9911420","DOIUrl":null,"url":null,"abstract":"Untethered miniaturized wireless neural sensor nodes with data transmission and energy harvesting capabilities call for circuit and system-level innovations to enable ultra-low energy deep implants for brain-machine interfaces. Realizing that the energy and size constraints of a neural implant motivate highly asymmetric system design (a small, low-power sensor and transmitter at the implant, with a relatively higher power receiver at a body-worn hub), we present Time-Domain Bi-Phasic Quasi-static Brain Communication (TD-BPQBC), offloading the burden of analog to digital conversion (ADC) and digital signal processing (DSP) to the receiver. The input analog signal is converted to time-domain pulse-width modulated (PWM) waveforms, and transmitted using the recently developed BPQBC method for reducing communication power in implants. The overall SoC consumes only $1.8 \\mu\\mathrm{W}$ power while sensing and communicating at 800kSps. The transmitter energy efficiency is only 1.1pJ/b, which is >30X better than the state-of-the-art, enabling a fully-electrical, energy-harvested, and connected in-brain sensor/stimulator node.","PeriodicalId":168466,"journal":{"name":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A $1.8\\\\mu\\\\mathrm{W}\\\\ 5.5$ mm3 ADC-less Neural Implant SoC utilizing 13.2pJ/Sample Time-domain Bi-phasic Quasi-static Brain Communication with Direct Analog to Time Conversion\",\"authors\":\"Baibhab Chatterjee, K. G. Kumar, Shulan Xiao, Gourab Barik, K. Jayant, Shreyas Sen\",\"doi\":\"10.1109/ESSCIRC55480.2022.9911420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Untethered miniaturized wireless neural sensor nodes with data transmission and energy harvesting capabilities call for circuit and system-level innovations to enable ultra-low energy deep implants for brain-machine interfaces. Realizing that the energy and size constraints of a neural implant motivate highly asymmetric system design (a small, low-power sensor and transmitter at the implant, with a relatively higher power receiver at a body-worn hub), we present Time-Domain Bi-Phasic Quasi-static Brain Communication (TD-BPQBC), offloading the burden of analog to digital conversion (ADC) and digital signal processing (DSP) to the receiver. The input analog signal is converted to time-domain pulse-width modulated (PWM) waveforms, and transmitted using the recently developed BPQBC method for reducing communication power in implants. The overall SoC consumes only $1.8 \\\\mu\\\\mathrm{W}$ power while sensing and communicating at 800kSps. The transmitter energy efficiency is only 1.1pJ/b, which is >30X better than the state-of-the-art, enabling a fully-electrical, energy-harvested, and connected in-brain sensor/stimulator node.\",\"PeriodicalId\":168466,\"journal\":{\"name\":\"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC55480.2022.9911420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC55480.2022.9911420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

具有数据传输和能量收集能力的非系绳微型无线神经传感器节点需要电路和系统级创新,以实现脑机接口的超低能量深度植入。意识到神经植入物的能量和尺寸限制激发了高度不对称的系统设计(植入物上的小,低功耗传感器和发射器,在身体磨损的轮毂上有相对较高的功率接收器),我们提出了时域双相准静态脑通信(TD-BPQBC),将模拟到数字转换(ADC)和数字信号处理(DSP)的负担转移到接收器上。输入模拟信号被转换为时域脉宽调制(PWM)波形,并使用最近开发的BPQBC方法传输,以降低植入物的通信功率。整体SoC功耗仅为$1.8 \mu\ mathm {W}$,而传感和通信功耗为800kSps。发射器的能量效率仅为1.1pJ/b,比目前最先进的产品高出30倍以上,实现了全电、能量收集和连接的脑内传感器/刺激器节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A $1.8\mu\mathrm{W}\ 5.5$ mm3 ADC-less Neural Implant SoC utilizing 13.2pJ/Sample Time-domain Bi-phasic Quasi-static Brain Communication with Direct Analog to Time Conversion
Untethered miniaturized wireless neural sensor nodes with data transmission and energy harvesting capabilities call for circuit and system-level innovations to enable ultra-low energy deep implants for brain-machine interfaces. Realizing that the energy and size constraints of a neural implant motivate highly asymmetric system design (a small, low-power sensor and transmitter at the implant, with a relatively higher power receiver at a body-worn hub), we present Time-Domain Bi-Phasic Quasi-static Brain Communication (TD-BPQBC), offloading the burden of analog to digital conversion (ADC) and digital signal processing (DSP) to the receiver. The input analog signal is converted to time-domain pulse-width modulated (PWM) waveforms, and transmitted using the recently developed BPQBC method for reducing communication power in implants. The overall SoC consumes only $1.8 \mu\mathrm{W}$ power while sensing and communicating at 800kSps. The transmitter energy efficiency is only 1.1pJ/b, which is >30X better than the state-of-the-art, enabling a fully-electrical, energy-harvested, and connected in-brain sensor/stimulator node.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信