用天真BAYES算法、c.45和K-NN算法对攻击目标进行分类,将对用户的风险降到最低

Niko Suwaryo, Ismasari Nawangsih, S. Rejeki
{"title":"用天真BAYES算法、c.45和K-NN算法对攻击目标进行分类,将对用户的风险降到最低","authors":"Niko Suwaryo, Ismasari Nawangsih, S. Rejeki","doi":"10.35968/JSI.V8I2.732","DOIUrl":null,"url":null,"abstract":"ABSTRACT Intrusion Detection System is the ability possessed by hardware or software that serves to detect suspicious activity on the network and analyze and search in general. The purpose of this study is to classify attack detection on the Intrusion Detection System using the C.45, Naive Bayes and K-NN algorithms to see how big the attack is. The benefits gained in this study are as a test and learning material in analyzing, classifying attacks so that they can prevent and minimize attacks to users. To overcome this problem, this study uses the C.45 algorithm, Naive Bayes, K-NN, K-NN algorithm produces an accuracy rate of 82.58%, Recall 81.73% and Precision 84.11% while the Naive Bayes accuracy 96.91%, Recall 97,45% and Percision 96.18% and the algorithm produces an optimal value of C.45 accuracy 97.80% Recall 98.18% and Precision  97.60%. On the attribute (attack) which has the number of classes or normal labels, dos, probes, r21. The results of the lowest K-NN algorithm are caused or normal to be considered yes(an attack) which should be No(no attack)and the C.45 algorithm attribute(attack) normal, dos, probe and r21, normal(no attack), yes(the presence of an attack) is optimal in the classification of attack detection data on Intrusion Detection System(IDS). Keywords: Data Mining, C.45, Naive Bayes and K-NN, Intrusion Detection System(IDS)","PeriodicalId":354826,"journal":{"name":"JURNAL SISTEM INFORMASI UNIVERSITAS SURYADARMA","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DETEKSI SERANGAN PADA INTRUSION DETECTION SYSTEM ( IDS ) UNTUK KLASIFIKASI SERANGAN DENGAN ALGORITMA NAÏVE BAYES, C.45 DAN K-NN DALAM MEMINIMALISASI RESIKO TERHADAP PENGGUNA\",\"authors\":\"Niko Suwaryo, Ismasari Nawangsih, S. Rejeki\",\"doi\":\"10.35968/JSI.V8I2.732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Intrusion Detection System is the ability possessed by hardware or software that serves to detect suspicious activity on the network and analyze and search in general. The purpose of this study is to classify attack detection on the Intrusion Detection System using the C.45, Naive Bayes and K-NN algorithms to see how big the attack is. The benefits gained in this study are as a test and learning material in analyzing, classifying attacks so that they can prevent and minimize attacks to users. To overcome this problem, this study uses the C.45 algorithm, Naive Bayes, K-NN, K-NN algorithm produces an accuracy rate of 82.58%, Recall 81.73% and Precision 84.11% while the Naive Bayes accuracy 96.91%, Recall 97,45% and Percision 96.18% and the algorithm produces an optimal value of C.45 accuracy 97.80% Recall 98.18% and Precision  97.60%. On the attribute (attack) which has the number of classes or normal labels, dos, probes, r21. The results of the lowest K-NN algorithm are caused or normal to be considered yes(an attack) which should be No(no attack)and the C.45 algorithm attribute(attack) normal, dos, probe and r21, normal(no attack), yes(the presence of an attack) is optimal in the classification of attack detection data on Intrusion Detection System(IDS). Keywords: Data Mining, C.45, Naive Bayes and K-NN, Intrusion Detection System(IDS)\",\"PeriodicalId\":354826,\"journal\":{\"name\":\"JURNAL SISTEM INFORMASI UNIVERSITAS SURYADARMA\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JURNAL SISTEM INFORMASI UNIVERSITAS SURYADARMA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35968/JSI.V8I2.732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL SISTEM INFORMASI UNIVERSITAS SURYADARMA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35968/JSI.V8I2.732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

入侵检测系统是指硬件或软件对网络上的可疑活动进行检测并进行分析和搜索的能力。本研究的目的是使用C.45,朴素贝叶斯和K-NN算法对入侵检测系统上的攻击检测进行分类,看看攻击有多大。本研究的好处是作为分析和分类攻击的测试和学习材料,从而预防和减少对用户的攻击。为了克服这一问题,本研究采用C.45算法、朴素贝叶斯、K-NN, K-NN算法的准确率为82.58%,召回率为81.73%,精度为84.11%,而朴素贝叶斯的准确率为96.91%,召回率为97.45%,准确率为96.18%,算法产生的C.45准确率为97.80%,召回率为98.18%,精度为97.60%的最优值。关于属性(攻击),它有类的数量或正常的标签,dos,探针,r21。在入侵检测系统(IDS)的攻击检测数据分类中,最低K-NN算法的结果是cause或normal被认为是yes(攻击),应该是No(没有攻击),C.45算法属性(攻击)normal, dos, probe和r21, normal(没有攻击),yes(存在攻击)是最优的。关键词:数据挖掘,C.45,朴素贝叶斯和K-NN,入侵检测系统(IDS)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DETEKSI SERANGAN PADA INTRUSION DETECTION SYSTEM ( IDS ) UNTUK KLASIFIKASI SERANGAN DENGAN ALGORITMA NAÏVE BAYES, C.45 DAN K-NN DALAM MEMINIMALISASI RESIKO TERHADAP PENGGUNA
ABSTRACT Intrusion Detection System is the ability possessed by hardware or software that serves to detect suspicious activity on the network and analyze and search in general. The purpose of this study is to classify attack detection on the Intrusion Detection System using the C.45, Naive Bayes and K-NN algorithms to see how big the attack is. The benefits gained in this study are as a test and learning material in analyzing, classifying attacks so that they can prevent and minimize attacks to users. To overcome this problem, this study uses the C.45 algorithm, Naive Bayes, K-NN, K-NN algorithm produces an accuracy rate of 82.58%, Recall 81.73% and Precision 84.11% while the Naive Bayes accuracy 96.91%, Recall 97,45% and Percision 96.18% and the algorithm produces an optimal value of C.45 accuracy 97.80% Recall 98.18% and Precision  97.60%. On the attribute (attack) which has the number of classes or normal labels, dos, probes, r21. The results of the lowest K-NN algorithm are caused or normal to be considered yes(an attack) which should be No(no attack)and the C.45 algorithm attribute(attack) normal, dos, probe and r21, normal(no attack), yes(the presence of an attack) is optimal in the classification of attack detection data on Intrusion Detection System(IDS). Keywords: Data Mining, C.45, Naive Bayes and K-NN, Intrusion Detection System(IDS)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信