{"title":"非标准词作为文本分类的特征","authors":"Slobodan Beliga, Sanda Martinčić-Ipšić","doi":"10.1109/MIPRO.2014.6859744","DOIUrl":null,"url":null,"abstract":"This paper presents categorization of Croatian texts using Non-Standard Words (NSW) as features. NonStandard Words are: numbers, dates, acronyms, abbreviations, currency, etc. NSWs in Croatian language are determined according to Croatian NSW taxonomy. For the purpose of this research, 390 text documents were collected and formed the SKIPEZ collection with 6 classes: official, literary, informative, popular, educational and scientific. Text categorization experiment was conducted on three different representations of the SKIPEZ collection: in the first representation, the frequencies of NSWs are used as features; in the second representation, the statistic measures of NSWs (variance, coefficient of variation, standard deviation, etc.) are used as features; while the third representation combines the first two feature sets. Naive Bayes, CN2, C4.5, kNN, Classification Trees and Random Forest algorithms were used in text categorization experiments. The best categorization results are achieved using the first feature set (NSW frequencies) with the categorization accuracy of 87%. This suggests that the NSWs should be considered as features in highly inflectional languages, such as Croatian. NSW based features reduce the dimensionality of the feature space without standard lemmatization procedures, and therefore the bag-of-NSWs should be considered for further Croatian texts categorization experiments.","PeriodicalId":299409,"journal":{"name":"2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)","volume":"28 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Non-standard words as features for text categorization\",\"authors\":\"Slobodan Beliga, Sanda Martinčić-Ipšić\",\"doi\":\"10.1109/MIPRO.2014.6859744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents categorization of Croatian texts using Non-Standard Words (NSW) as features. NonStandard Words are: numbers, dates, acronyms, abbreviations, currency, etc. NSWs in Croatian language are determined according to Croatian NSW taxonomy. For the purpose of this research, 390 text documents were collected and formed the SKIPEZ collection with 6 classes: official, literary, informative, popular, educational and scientific. Text categorization experiment was conducted on three different representations of the SKIPEZ collection: in the first representation, the frequencies of NSWs are used as features; in the second representation, the statistic measures of NSWs (variance, coefficient of variation, standard deviation, etc.) are used as features; while the third representation combines the first two feature sets. Naive Bayes, CN2, C4.5, kNN, Classification Trees and Random Forest algorithms were used in text categorization experiments. The best categorization results are achieved using the first feature set (NSW frequencies) with the categorization accuracy of 87%. This suggests that the NSWs should be considered as features in highly inflectional languages, such as Croatian. NSW based features reduce the dimensionality of the feature space without standard lemmatization procedures, and therefore the bag-of-NSWs should be considered for further Croatian texts categorization experiments.\",\"PeriodicalId\":299409,\"journal\":{\"name\":\"2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)\",\"volume\":\"28 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIPRO.2014.6859744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPRO.2014.6859744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-standard words as features for text categorization
This paper presents categorization of Croatian texts using Non-Standard Words (NSW) as features. NonStandard Words are: numbers, dates, acronyms, abbreviations, currency, etc. NSWs in Croatian language are determined according to Croatian NSW taxonomy. For the purpose of this research, 390 text documents were collected and formed the SKIPEZ collection with 6 classes: official, literary, informative, popular, educational and scientific. Text categorization experiment was conducted on three different representations of the SKIPEZ collection: in the first representation, the frequencies of NSWs are used as features; in the second representation, the statistic measures of NSWs (variance, coefficient of variation, standard deviation, etc.) are used as features; while the third representation combines the first two feature sets. Naive Bayes, CN2, C4.5, kNN, Classification Trees and Random Forest algorithms were used in text categorization experiments. The best categorization results are achieved using the first feature set (NSW frequencies) with the categorization accuracy of 87%. This suggests that the NSWs should be considered as features in highly inflectional languages, such as Croatian. NSW based features reduce the dimensionality of the feature space without standard lemmatization procedures, and therefore the bag-of-NSWs should be considered for further Croatian texts categorization experiments.